中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15篇【精】
總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性的經(jīng)驗(yàn)方法以及結(jié)論的書(shū)面材料,它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運(yùn)用這些規(guī)律,讓我們一起來(lái)學(xué)習(xí)寫總結(jié)吧。那么你真的懂得怎么寫總結(jié)嗎?以下是小編整理的中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,大家一起來(lái)看看吧。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
中考數(shù)學(xué)知識(shí)點(diǎn):分式混合運(yùn)算法則
分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;變號(hào)必須兩處,結(jié)果要求最簡(jiǎn).
分式混合運(yùn)算法則:
分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);
乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;
加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;
變號(hào)必須兩處,結(jié)果要求最簡(jiǎn).
中考數(shù)學(xué)二次根式的加減法知識(shí)點(diǎn)總結(jié)
二次根式的加減法
知識(shí)點(diǎn)1:同類二次根式
(Ⅰ)幾個(gè)二次根式化成最簡(jiǎn)二次根式以后,如果被開(kāi)方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式,如這樣的二次根式都是同類二次根式。
(Ⅱ)判斷同類二次根式的方法:(1)首先將不是最簡(jiǎn)形式的二次根式化為最簡(jiǎn)二次根式以后,再看被開(kāi)方數(shù)是否相同。(2)幾個(gè)二次根式是否是同類二次根式,只與被開(kāi)方數(shù)及根指數(shù)有關(guān),而與根號(hào)外的因式無(wú)關(guān)。
知識(shí)點(diǎn)2:合并同類二次根式的'方法
合并同類二次根式的理論依據(jù)是逆用乘法對(duì)加法的分配律,合并同類二次根式,只把它們的系數(shù)相加,根指數(shù)和被開(kāi)方數(shù)都不變,不是同類二次根式的不能合并。
知識(shí)點(diǎn)3:二次根式的加減法則
二次根式相加減先把各個(gè)二次根式化成最簡(jiǎn)二次根式,再把同類二次根式合并,合并的方法為系數(shù)相加,根式不變。
知識(shí)點(diǎn)4:二次根式的混合運(yùn)算方法和順序
運(yùn)算方法是利用加、減、乘、除法則以及與多項(xiàng)式乘法類似法則進(jìn)行混合運(yùn)算。運(yùn)算的順序是先乘方,后乘除,最后加減,有括號(hào)的先算括號(hào)內(nèi)的。
知識(shí)點(diǎn)5:二次根式的加減法則與乘除法則的區(qū)別
乘除法中,系數(shù)相乘,被開(kāi)方數(shù)相乘,與兩根式是否是同類根式無(wú)關(guān),加減法中,系數(shù)相加,被開(kāi)方數(shù)不變而且兩根式須是同類最簡(jiǎn)根式。
中考數(shù)學(xué)知識(shí)點(diǎn):直角三角形
★重點(diǎn)★解直角三角形
☆內(nèi)容提要☆
一、三角函數(shù)
1.定義:在Rt△ABC中,∠C=Rt∠,則sinA=;cosA=;tgA=;ctgA=.
2.特殊角的三角函數(shù)值:
0°30°45°60°90°
sinα
cosα
tgα/
ctgα/
3.互余兩角的三角函數(shù)關(guān)系:sin(90°-α)=cosα;…
4.三角函數(shù)值隨角度變化的關(guān)系
5.查三角函數(shù)表
二、解直角三角形
1.定義:已知邊和角(兩個(gè),其中必有一邊)→所有未知的邊和角。
2.依據(jù):①邊的關(guān)系:
、诮堑年P(guān)系:A+B=90°
、圻吔顷P(guān)系:三角函數(shù)的定義。
注意:盡量避免使用中間數(shù)據(jù)和除法。
三、對(duì)實(shí)際問(wèn)題的處理
1.俯、仰角:2.方位角、象限角:3.坡度:
4.在兩個(gè)直角三角形中,都缺解直角三角形的條件時(shí),可用列方程的辦法解決。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
1、解直角三角形
銳角三角函數(shù)
銳角a的正弦、余弦和正切統(tǒng)稱∠a的三角函數(shù)。
如果∠a是Rt△ABC的一個(gè)銳角,則有
銳角三角函數(shù)的計(jì)算
解直角三角形
在直角三角形中,由已知的一些邊、角,求出另一些邊、角的過(guò)程,叫做解直角三角形。
2、直線與圓的位置關(guān)系
直線與圓的位置關(guān)系
當(dāng)直線與圓有兩個(gè)公共點(diǎn)時(shí),叫做直線與圓相交;當(dāng)直線與圓有公共點(diǎn)時(shí),叫做直線與圓相切,公共點(diǎn)叫做切點(diǎn);當(dāng)直線與圓沒(méi)有公共點(diǎn)時(shí),叫做直線與圓相離。
直線與圓的位置關(guān)系有以下定理:
直線與圓相切的判定定理:
經(jīng)過(guò)半徑的外端并且垂直這條半徑的直線是圓的切線。
圓的切線性質(zhì):
經(jīng)過(guò)切點(diǎn)的半徑垂直于圓的切線。
切線長(zhǎng)定理
從圓外一點(diǎn)作圓的'切線,通常我們把圓外這一點(diǎn)到切點(diǎn)間的線段的長(zhǎng)叫做切線長(zhǎng)。
切線長(zhǎng)定理:過(guò)圓外一點(diǎn)所作的圓的兩條切線長(zhǎng)相等。
三角形的內(nèi)切圓
與三角形三邊都相切的圓叫做三角形的內(nèi)切圓,圓心叫做三角形的內(nèi)心,三角形叫做圓的外切三角形。三角形的內(nèi)心是三角形的三條角平分線的交點(diǎn)。
3、三視圖與表面展開(kāi)圖
投影
物體在光線的照射下,在某個(gè)平面內(nèi)形成的影子叫做投影。光線叫做投影線,投影所在的平面叫做投影面。由平行的投射線所形成的投射叫做平行投影。
可以把太陽(yáng)光線、探照燈的光線看成平行光線,它們所形成的投影就是平行投影。
簡(jiǎn)單幾何體的三視圖
物體在正投影面上的正投影叫做主視圖,在水平投影面上的正投影叫做俯視圖,在側(cè)投影面上的正投影叫做左視圖。
主視圖、左視圖和俯視圖合稱三視圖。
產(chǎn)生主視圖的投影線方向也叫做主視方向。
由三視圖描述幾何體
三視圖不僅反映了物體的形狀,而且反映了各個(gè)方向的尺寸大小。
簡(jiǎn)單幾何體的表面展開(kāi)圖
將幾何體沿著某些棱“剪開(kāi)”,并使各個(gè)面連在一起,鋪平所得到的平面圖形稱為幾何體的表面展開(kāi)圖。
圓柱可以看做由一個(gè)矩形ABCD繞它的一條邊BC旋轉(zhuǎn)一周,其余各邊所成的面圍成的幾何體。AB、CD旋轉(zhuǎn)所成的面就是圓柱的兩個(gè)底面,是兩個(gè)半徑相同的圓。AD旋轉(zhuǎn)所成的面就是圓柱的側(cè)面,AD不論轉(zhuǎn)動(dòng)到哪個(gè)位置,都是圓柱的母線。
圓錐可以看做將一根直角三角形ACB繞它的一條直角邊(AC)旋轉(zhuǎn)一周,它的其余各邊所成的面圍成的一個(gè)幾何體。直角邊BC旋轉(zhuǎn)所成的面就是圓錐的底面,斜邊AB旋轉(zhuǎn)所成的面就是圓錐的側(cè)面,斜邊AB不論轉(zhuǎn)動(dòng)到哪個(gè)位置,都叫做圓錐的母線。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
圓的定理:
1不在同一直線上的三點(diǎn)確定一個(gè)圓。
2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
5圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7同圓或等圓的半徑相等
8到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
9定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
10推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
中考數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)口訣
有理數(shù)的加法運(yùn)算
同號(hào)相加一邊倒;異號(hào)相加“大”減“小”,
符號(hào)跟著大的跑;絕對(duì)值相等“零”正好。
合并同類項(xiàng)
合并同類項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。
去、添括號(hào)法則
去括號(hào)、添括號(hào),關(guān)鍵看符號(hào),
括號(hào)前面是正號(hào),去、添括號(hào)不變號(hào),
括號(hào)前面是負(fù)號(hào),去、添括號(hào)都變號(hào)。
一元一次方程
已知未知要分離,分離方法就是移,加減移項(xiàng)要變號(hào),乘除移了要顛倒。
平方差公式
平方差公式有兩項(xiàng),符號(hào)相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
完全平方公式
完全平方有三項(xiàng),首尾符號(hào)是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;
首±尾括號(hào)帶平方,尾項(xiàng)符號(hào)隨中央。
因式分解
一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,
兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,
四項(xiàng)仔細(xì)看清楚,若有三個(gè)平方數(shù)(項(xiàng)),
就用一三來(lái)分組,否則二二去分組,
五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,
以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚。
單項(xiàng)式運(yùn)算
加、減、乘、除、乘(開(kāi))方,三級(jí)運(yùn)算分得清,
系數(shù)進(jìn)行同級(jí)(運(yùn))算,指數(shù)運(yùn)算降級(jí)(進(jìn))行。
一元一次不等式解題步驟
去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào),同類項(xiàng)合并好,再把系數(shù)來(lái)除掉,
兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了。
一元一次不等式組的解集
大大取較大,小小取較小,小大、大小取中間,大小、小大無(wú)處找。
一元二次不等式、一元一次絕對(duì)值不等式的解集
大(魚(yú))于(吃)取兩邊,小(魚(yú))于(吃)取中間。
分式混合運(yùn)算法則
分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);
乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;
加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;
變號(hào)必須兩處,結(jié)果要求最簡(jiǎn)。
中考數(shù)學(xué)知識(shí)點(diǎn)歸納:平面直角坐標(biāo)系
平面直角坐標(biāo)系
1、平面直角坐標(biāo)系
在平面內(nèi)畫(huà)兩條互相垂直且有公共原點(diǎn)的數(shù)軸,就組成了平面直角坐標(biāo)系。
其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點(diǎn)O(即公共的`原點(diǎn))叫做直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(diǎn),不屬于任何象限。
2、點(diǎn)的坐標(biāo)的概念
點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開(kāi),橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng)時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
一、代數(shù)式
1. 概念:用基本的運(yùn)算符號(hào)(加、減、乘、除、乘方、開(kāi)方)把數(shù)與字母連接而成的式子叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或字母也是代數(shù)式。
2. 代數(shù)式的值:用數(shù)代替代數(shù)式里的字母,按照代數(shù)式的運(yùn)算關(guān)系,計(jì)算得出的結(jié)果。
二、整式
單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。
1. 單項(xiàng)式:1)數(shù)與字母的乘積這樣的代數(shù)式叫做單項(xiàng)式。單獨(dú)的一個(gè)數(shù)或字母(可以是兩個(gè)數(shù)字或字母相乘)也是單項(xiàng)式。
2) 單項(xiàng)式的系數(shù):?jiǎn)雾?xiàng)式中的 數(shù)字因數(shù)及性質(zhì)符號(hào)叫做單項(xiàng)式的系數(shù)。
3) 單項(xiàng)式的次數(shù):一個(gè)單項(xiàng)式中,所有字母的指數(shù)的和叫做這個(gè)單項(xiàng)式的次數(shù)。
2. 多項(xiàng)式:1)幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。在多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),其中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。一個(gè)多項(xiàng)式有幾項(xiàng)就叫做幾項(xiàng)式。
2)多項(xiàng)式的次數(shù):多項(xiàng)式中,次數(shù)最高的項(xiàng)的'次數(shù),就是這個(gè)多項(xiàng)式的次數(shù)。
3. 多項(xiàng)式的排列:
1).把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從大到小的順序排列起來(lái),叫做把多項(xiàng)式按這個(gè)字母降冪排列。
2).把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從小到大的順序排列起來(lái),叫做把多項(xiàng)式按這個(gè)字母升冪排列。
由于單項(xiàng)式的項(xiàng),包括它前面的性質(zhì)符號(hào),因此在排列時(shí),仍需把每一項(xiàng)的性質(zhì)符號(hào)看作是這一項(xiàng)的一部分,一起移動(dòng)。
三、整式的運(yùn)算
1. 同類項(xiàng)——所含字母相同,并且相同字母的次數(shù)也相同的項(xiàng)叫做同類項(xiàng),幾個(gè)常數(shù)項(xiàng)也叫同類項(xiàng)。同類項(xiàng)與系數(shù)無(wú)關(guān),與字母排列的順序也無(wú)關(guān)。
2. 合并同類項(xiàng):把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng)叫做合并同類項(xiàng)。即同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。
3. 整式的加減:有括號(hào)的先算括號(hào)里面的,然后再合并同類項(xiàng)。
4. 冪的運(yùn)算:
5. 整式的乘法:
1) 單項(xiàng)式與單項(xiàng)式相乘法則:把它們的系數(shù)、同底數(shù)冪分別相乘,其余只在一個(gè)單項(xiàng)式里含有的字母連同它的指數(shù)作為積的因式。
2) 單項(xiàng)式與多項(xiàng)式相乘法則:用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
3) 多項(xiàng)式與多項(xiàng)式相乘法則:先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
6. 整式的除法
1) 單項(xiàng)式除以單項(xiàng)式:把系數(shù)與同底數(shù)冪分別相除作為上的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式。
2) 多項(xiàng)式除以單項(xiàng)式:把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加。
四、因式分解——把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式
1) 提公因式法:(公因式——多項(xiàng)式各項(xiàng)都含有的公共因式)吧公因式提到括號(hào)外面,將多項(xiàng)式寫成因式乘積的形式。 取各項(xiàng)系數(shù)的最大公約數(shù)作為因式的系數(shù),取相同字母最低次冪的積。公因式可以是單項(xiàng)式,也可以是多項(xiàng)式。
2) 公式法:A.平方差公式; B.完全平方公式
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
圓的定理:
1不在同一直線上的三點(diǎn)確定一個(gè)圓。
2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
5圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7同圓或等圓的半徑相等
8到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
9定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
10推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
中考數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)口訣
有理數(shù)的加法運(yùn)算
同號(hào)相加一邊倒;異號(hào)相加“大”減“小”,符號(hào)跟著大的跑;絕對(duì)值相等“零”正好。
合并同類項(xiàng)
合并同類項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。
去、添括號(hào)法則
去括號(hào)、添括號(hào),關(guān)鍵看符號(hào),括號(hào)前面是正號(hào),去、添括號(hào)不變號(hào),括號(hào)前面是負(fù)號(hào),去、添括號(hào)都變號(hào)。
一元一次方程
已知未知要分離,分離方法就是移,加減移項(xiàng)要變號(hào),乘除移了要顛倒。
平方差公式
平方差公式有兩項(xiàng),符號(hào)相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
完全平方公式
完全平方有三項(xiàng),首尾符號(hào)是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;
首±尾括號(hào)帶平方,尾項(xiàng)符號(hào)隨中央。
因式分解
一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,四項(xiàng)仔細(xì)看清楚,若有三個(gè)平方數(shù)(項(xiàng)),就用一三來(lái)分組,否則二二去分組,五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚。
單項(xiàng)式運(yùn)算
加、減、乘、除、乘(開(kāi))方,三級(jí)運(yùn)算分得清,系數(shù)進(jìn)行同級(jí)(運(yùn))算,指數(shù)運(yùn)算降級(jí)(進(jìn))行。
一元一次不等式解題步驟
去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào),同類項(xiàng)合并好,再把系數(shù)來(lái)除掉,兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了。
一元一次不等式組的解集
大大取較大,小小取較小,小大、大小取中間,大小、小大無(wú)處找。
一元二次不等式、一元一次絕對(duì)值不等式的解集
大(魚(yú))于(吃)取兩邊,小(魚(yú))于(吃)取中間。
分式混合運(yùn)算法則
分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);
乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;
加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;
變號(hào)必須兩處,結(jié)果要求最簡(jiǎn)。
中考數(shù)學(xué)知識(shí)點(diǎn)歸納:平面直角坐標(biāo)系
平面直角坐標(biāo)系
1、平面直角坐標(biāo)系
在平面內(nèi)畫(huà)兩條互相垂直且有公共原點(diǎn)的數(shù)軸,就組成了平面直角坐標(biāo)系。
其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點(diǎn)O(即公共的原點(diǎn))叫做直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(diǎn),不屬于任何象限。
2、點(diǎn)的坐標(biāo)的概念
點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開(kāi),橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng)時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。
中考數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)整理2
函數(shù)
、傥恢玫拇_定與平面直角坐標(biāo)系
位置的確定
坐標(biāo)變換
平面直角坐標(biāo)系內(nèi)點(diǎn)的特征
平面直角坐標(biāo)系內(nèi)點(diǎn)坐標(biāo)的符號(hào)與點(diǎn)的象限位置
對(duì)稱問(wèn)題:P(x,y)→Q(x,- y)關(guān)于x軸對(duì)稱P(x,y)→Q(- x,y)關(guān)于y軸對(duì)稱P(x,y)→Q(- x,-y)關(guān)于原點(diǎn)對(duì)稱
變量、自變量、因變量、函數(shù)的定義
函數(shù)自變量、因變量的取值范圍(使式子有意義的條件、圖象法) 56、函數(shù)的圖象:變量的變化趨勢(shì)描述
、谝淮魏瘮(shù)與正比例函數(shù)
一次函數(shù)的定義與正比例函數(shù)的定義
一次函數(shù)的圖象:直線,畫(huà)法
一次函數(shù)的性質(zhì)(增減性)
一次函數(shù)y=kx+b(k≠0)中k、b符號(hào)與圖象位置
待定系數(shù)法求一次函數(shù)的解析式(一設(shè)二列三解四回)
一次函數(shù)的平移問(wèn)題
一次函數(shù)與一元一次方程、一元一次不等式、二元一次方程的關(guān)系(圖象法)
一次函數(shù)的實(shí)際應(yīng)用
一次函數(shù)的綜合應(yīng)用(1)一次函數(shù)與方程綜合(2)一次函數(shù)與其它函數(shù)綜合(3)一次函數(shù)與不等式的綜合(4)一次函數(shù)與幾何綜合
中考數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)整理3
中考難點(diǎn)數(shù)學(xué)知識(shí)點(diǎn)
三角函數(shù)關(guān)系
倒數(shù)關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關(guān)系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數(shù)關(guān)系六角形記憶法
構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
倒數(shù)關(guān)系
對(duì)角線上兩個(gè)函數(shù)互為倒數(shù);
商數(shù)關(guān)系
六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個(gè)也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。
平方關(guān)系
在帶有陰影線的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。
中考數(shù)學(xué)最易出錯(cuò)的知識(shí)點(diǎn)
數(shù)與式
易錯(cuò)點(diǎn)1:有理數(shù)、無(wú)理數(shù)以及實(shí)數(shù)的有關(guān)概念理解錯(cuò)誤,相反數(shù)、倒數(shù)、絕對(duì)值的意義概念混淆。以及絕對(duì)值與數(shù)的分類。每年選擇必考。
易錯(cuò)點(diǎn)2:實(shí)數(shù)的運(yùn)算要掌握好與實(shí)數(shù)有關(guān)的概念、性質(zhì),靈活地運(yùn)用各種運(yùn)算律,關(guān)鍵是把好符號(hào)關(guān);在較復(fù)雜的運(yùn)算中,不注意運(yùn)算順序或者不合理使用運(yùn)算律,從而使運(yùn)算出現(xiàn)錯(cuò)誤。
易錯(cuò)點(diǎn)3:平方根、算術(shù)平方根、立方根的區(qū)別。填空題必考。
易錯(cuò)點(diǎn)4:求分式值為零時(shí)學(xué)生易忽略分母不能為零。
易錯(cuò)點(diǎn)5:分式運(yùn)算時(shí)要注意運(yùn)算法則和符號(hào)的.變化。當(dāng)分式的分子分母是多項(xiàng)式時(shí)要先因式分解,因式分解要分解到不能再分解為止,注意計(jì)算方法,不能去分母,把分式化為最簡(jiǎn)分式。填空題必考。
易錯(cuò)點(diǎn)6:非負(fù)數(shù)的性質(zhì):幾個(gè)非負(fù)數(shù)的和為0,每個(gè)式子都為0;整體代入法;完全平方式。
易錯(cuò)點(diǎn)7:計(jì)算第一題必考。五個(gè)基本數(shù)的計(jì)算:0指數(shù),三角函數(shù),絕對(duì)值,負(fù)指數(shù),二次根式的化簡(jiǎn)。
易錯(cuò)點(diǎn)8:科學(xué)記數(shù)法。精確度,有效數(shù)字。這個(gè)上海還沒(méi)有考過(guò),知道就好!
易錯(cuò)點(diǎn)9:代入求值要使式子有意義。各種數(shù)式的計(jì)算方法要掌握,一定要注意計(jì)算順序。
方程(組)與不等式(組)
易錯(cuò)點(diǎn)1:各種方程(組)的解法要熟練掌握,方程(組)無(wú)解的意義是找不到等式成立的條件。
易錯(cuò)點(diǎn)2:運(yùn)用等式性質(zhì)時(shí),兩邊同除以一個(gè)數(shù)必須要注意不能為0的情況,還要關(guān)注解方程與方程組的基本思想。(消元降次)主要陷阱是消除了一個(gè)帶X公因式要回頭檢驗(yàn)!
易錯(cuò)點(diǎn)3:運(yùn)用不等式的性質(zhì)3時(shí),容易忘記改不改變符號(hào)的方向而導(dǎo)致結(jié)果出錯(cuò)。
易錯(cuò)點(diǎn)4:關(guān)于一元二次方程的取值范圍的題目易忽視二次項(xiàng)系數(shù)不為0導(dǎo)致出錯(cuò)。
易錯(cuò)點(diǎn)5:關(guān)于一元一次不等式組有解無(wú)解的條件易忽視相等的情況。
易錯(cuò)點(diǎn)6:解分式方程時(shí)首要步驟去分母,分?jǐn)?shù)相相當(dāng)于括號(hào),易忘記根檢驗(yàn),導(dǎo)致運(yùn)算結(jié)果出錯(cuò)。
易錯(cuò)點(diǎn)7:不等式(組)的解得問(wèn)題要先確定解集,確定解集的方法運(yùn)用數(shù)軸。
易錯(cuò)點(diǎn)8:利用函數(shù)圖象求不等式的解集和方程的解。
中考數(shù)學(xué)易出錯(cuò)的知識(shí)點(diǎn)
函數(shù)
易錯(cuò)點(diǎn)1:各個(gè)待定系數(shù)表示的的意義。
易錯(cuò)點(diǎn)2:熟練掌握各種函數(shù)解析式的求法,有幾個(gè)的待定系數(shù)就要幾個(gè)點(diǎn)值。
易錯(cuò)點(diǎn)3:利用圖像求不等式的解集和方程(組)的解,利用圖像性質(zhì)確定增減性。
易錯(cuò)點(diǎn)4:兩個(gè)變量利用函數(shù)模型解實(shí)際問(wèn)題,注意區(qū)別方程、函數(shù)、不等式模型解決不等領(lǐng)域的問(wèn)題。
易錯(cuò)點(diǎn)5:利用函數(shù)圖象進(jìn)行分類(平行四邊形、相似、直角三角形、等腰三角形)以及分類的求解方法。
易錯(cuò)點(diǎn)6:與坐標(biāo)軸交點(diǎn)坐標(biāo)一定要會(huì)求。面積值的求解方法,距離之和的最小值的求解方法,距離之差值的求解方法。
易錯(cuò)點(diǎn)7:數(shù)形結(jié)合思想方法的運(yùn)用,還應(yīng)注意結(jié)合圖像性質(zhì)解題。函數(shù)圖象與圖形結(jié)合學(xué)會(huì)從復(fù)雜圖形分解為簡(jiǎn)單圖形的方法,圖形為圖像提供數(shù)據(jù)或者圖像為圖形提供數(shù)據(jù)。
易錯(cuò)點(diǎn)8:自變量的取值范圍有:二次根式的被開(kāi)方數(shù)是非負(fù)數(shù),分式的分母不為0,0指數(shù)底數(shù)不為0,其它都是全體實(shí)數(shù)。
中考數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)整理4
中考數(shù)學(xué)較難的知識(shí)點(diǎn)
一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常數(shù)項(xiàng)是-2.
2.一元二次方程3x2+4x-2=0的一次項(xiàng)系數(shù)為4,常數(shù)項(xiàng)是-2.
3.一元二次方程3x2-5x-7=0的二次項(xiàng)系數(shù)為3,常數(shù)項(xiàng)是-7.
4.把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0.
知識(shí)點(diǎn)2:直角坐標(biāo)系與點(diǎn)的位置
1.直角坐標(biāo)系中,點(diǎn)A(3,0)在y軸上。
2.直角坐標(biāo)系中,x軸上的任意點(diǎn)的橫坐標(biāo)為0.
3.直角坐標(biāo)系中,點(diǎn)A(1,1)在第一象限。
4.直角坐標(biāo)系中,點(diǎn)A(-2,3)在第四象限。
5.直角坐標(biāo)系中,點(diǎn)A(-2,1)在第二象限。
知識(shí)點(diǎn)3:已知自變量的值求函數(shù)值
1.當(dāng)x=2時(shí),函數(shù)y=的值為1.
2.當(dāng)x=3時(shí),函數(shù)y=的值為1.
3.當(dāng)x=-1時(shí),函數(shù)y=的值為1.
知識(shí)點(diǎn)4:基本函數(shù)的概念及性質(zhì)
1.函數(shù)y=-8x是一次函數(shù)。
2.函數(shù)y=4x+1是正比例函數(shù)。
3.函數(shù)是反比例函數(shù)。
4.拋物線y=-3(x-2)2-5的開(kāi)口向下。
5.拋物線y=4(x-3)2-10的對(duì)稱軸是x=3.
6.拋物線的頂點(diǎn)坐標(biāo)是(1,2)。
7.反比例函數(shù)的圖象在第一、三象限。
知識(shí)點(diǎn)5:數(shù)據(jù)的平均數(shù)中位數(shù)與眾數(shù)
1.數(shù)據(jù)13,10,12,8,7的平均數(shù)是10.
2.數(shù)據(jù)3,4,2,4,4的眾數(shù)是4.
3.數(shù)據(jù)1,2,3,4,5的中位數(shù)是3.
知識(shí)點(diǎn)6:特殊三角函數(shù)值
30°=根號(hào)3/2 。
260°+ cos260°= 1.
3.2sin30°+ tan45°= 2.
45°= 1.
60°+ sin30°= 1.
中考數(shù)學(xué)難點(diǎn)知識(shí)點(diǎn)總結(jié)《幾何》
初中幾何公式:線
1.同角或等角的余角相等
2.過(guò)一點(diǎn)有且只有一條直線和已知直線垂直
3.過(guò)兩點(diǎn)有且只有一條直線
4.兩點(diǎn)之間線段最短
5.同角或等角的補(bǔ)角相等
6.直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7.平行公理經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行
8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行
初中幾何公式:角
9.同位角相等,兩直線平行
10.內(nèi)錯(cuò)角相等,兩直線平行
11.同旁內(nèi)角互補(bǔ),兩直線平行
12.兩直線平行,同位角相等
13.兩直線平行,內(nèi)錯(cuò)角相等
14.兩直線平行,同旁內(nèi)角互補(bǔ)
初中幾何公式:三角形
15.定理三角形兩邊的和大于第三邊
16.推論三角形兩邊的差小于第三邊
17.三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°
18.推論1直角三角形的兩個(gè)銳角互余
19.推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20.推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21.全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22.邊角邊公理有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
23.角邊角公理有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
24.推論有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
25.邊邊邊公理有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26.斜邊、直角邊公理有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
27.定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28.定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29.角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
中考數(shù)學(xué)備考難點(diǎn):分式方程
分式方程
1、分式方程
分母里含有未知數(shù)的方程叫做分式方程。
2、分式方程的一般方法
解分式方程的思想是將“分式方程”轉(zhuǎn)化為“整式方程”。它的一般解法是:
(1)去分母,方程兩邊都乘以最簡(jiǎn)公分母
(2)解所得的整式方程
(3)驗(yàn)根:將所得的根代入最簡(jiǎn)公分母,若等于零,就是增根,應(yīng)該舍去;若不等于零,就是原方程的根。
3、分式方程的特殊解法
換元法:
換元法是中學(xué)數(shù)學(xué)中的一個(gè)重要的數(shù)學(xué)思想,其應(yīng)用非常廣泛,當(dāng)分式方程具有某種特殊形式,一般的去分母不易解決時(shí),可考慮用換元法。
中考數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)整理5
1.數(shù)軸
(1)數(shù)軸的概念:規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的直線叫做數(shù)軸.
數(shù)軸的三要素:原點(diǎn),單位長(zhǎng)度,正方向。
(2)數(shù)軸上的點(diǎn):所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,但數(shù)軸上的點(diǎn)不都表示有理數(shù).(一般取右方向?yàn)檎较颍瑪?shù)軸上的點(diǎn)對(duì)應(yīng)任意實(shí)數(shù),包括無(wú)理數(shù).)
(3)用數(shù)軸比較大小:一般來(lái)說(shuō),當(dāng)數(shù)軸方向朝右時(shí),右邊的數(shù)總比左邊的數(shù)大。
重點(diǎn)知識(shí):
初中數(shù)學(xué)第一課,認(rèn)識(shí)正數(shù)與負(fù)數(shù)!新初一的來(lái)~
2.相反數(shù)
(1)相反數(shù)的概念:只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù).
(2)相反數(shù)的意義:掌握相反數(shù)是成對(duì)出現(xiàn)的,不能單獨(dú)存在,從數(shù)軸上看,除0外,互為相反數(shù)的兩個(gè)數(shù),它們分別在原點(diǎn)兩旁且到原點(diǎn)距離相等。
(3)多重符號(hào)的化簡(jiǎn):與“+”個(gè)數(shù)無(wú)關(guān),有奇數(shù)個(gè)“﹣”號(hào)結(jié)果為負(fù),有偶數(shù)個(gè)“﹣”號(hào),結(jié)果為正。
(4)規(guī)律方法總結(jié):求一個(gè)數(shù)的相反數(shù)的方法就是在這個(gè)數(shù)的前邊添加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時(shí)m+n是一個(gè)整體,在整體前面添負(fù)號(hào)時(shí),要用小括號(hào)。
3.絕對(duì)值
1.概念:數(shù)軸上某個(gè)數(shù)與原點(diǎn)的距離叫做這個(gè)數(shù)的絕對(duì)值。
、倩橄喾磾(shù)的兩個(gè)數(shù)絕對(duì)值相等;
、诮^對(duì)值等于一個(gè)正數(shù)的數(shù)有兩個(gè),絕對(duì)值等于0的數(shù)有一個(gè),沒(méi)有絕對(duì)值等于負(fù)數(shù)的數(shù).
③有理數(shù)的絕對(duì)值都是非負(fù)數(shù).
2.如果用字母a表示有理數(shù),則數(shù)a絕對(duì)值要由字母a本身的取值來(lái)確定:
①當(dāng)a是正有理數(shù)時(shí),a的絕對(duì)值是它本身a;
②當(dāng)a是負(fù)有理數(shù)時(shí),a的絕對(duì)值是它的相反數(shù)﹣a;
③當(dāng)a是零時(shí),a的絕對(duì)值是零.
即|a|={a(a>0)0(a=0)﹣a(a<0)
中考數(shù)學(xué)知識(shí)點(diǎn)
1、反比例函數(shù)的概念
一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù)。
2、反比例函數(shù)的圖像
反比例函數(shù)的圖像是雙曲線,它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點(diǎn)對(duì)稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒(méi)有交點(diǎn),即雙曲線的兩個(gè)分支無(wú)限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。
3、反比例函數(shù)的性質(zhì)
反比例函數(shù)k的符號(hào)k>0k<0圖像yO xyO x性質(zhì)①x的取值范圍是x0,y的取值范圍是y0;
、诋(dāng)k>0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第一、三象限。在每個(gè)象限內(nèi),y
隨x的增大而減小。
、賦的取值范圍是x0,y的取值范圍是y0;
、诋(dāng)k<0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第二、四象限。在每個(gè)象限內(nèi),y
隨x的增大而增大。
4、反比例函數(shù)解析式的確定
確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個(gè)待定系數(shù),因此只需要一對(duì)對(duì)應(yīng)值或圖像上的一個(gè)點(diǎn)的坐標(biāo),即可求出k的值,從而確定其解析式。
5、反比例函數(shù)的幾何意義
設(shè)是反比例函數(shù)圖象上任一點(diǎn),過(guò)點(diǎn)P作軸、軸的垂線,垂足為A,則
(1)△OPA的面積.
(2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無(wú)論P(yáng)怎樣移動(dòng),△OPA的面積和矩形OAPB的面積都保持不變。
矩形PCEF面積=,平行四邊形PDEA面積=
二次函數(shù)中考數(shù)學(xué)知識(shí)點(diǎn)
二次函數(shù)的解析式有三種形式:
(1)一般式:
(2)頂點(diǎn)式:
(3)當(dāng)拋物線與x軸有交點(diǎn)時(shí),即對(duì)應(yīng)二次好方程有實(shí)根和存在時(shí),根據(jù)二次三項(xiàng)式的分解因式,二次函數(shù)可轉(zhuǎn)化為兩根式。如果沒(méi)有交點(diǎn),則不能這樣表示。
注意:拋物線位置由決定.
(1)決定拋物線的開(kāi)口方向
、匍_(kāi)口向上.
、陂_(kāi)口向下.
(2)決定拋物線與y軸交點(diǎn)的位置.
、賵D象與y軸交點(diǎn)在x軸上方.
②圖象過(guò)原點(diǎn).
、蹐D象與y軸交點(diǎn)在x軸下方.
(3)決定拋物線對(duì)稱軸的位置(對(duì)稱軸:)
、偻(hào)對(duì)稱軸在y軸左側(cè).
②對(duì)稱軸是y軸.
、郛愄(hào)對(duì)稱軸在y軸右側(cè).
(4)頂點(diǎn)坐標(biāo).
(5)決定拋物線與x軸的交點(diǎn)情況.
、佟>0拋物線與x軸有兩個(gè)不同交點(diǎn).
②△=0拋物線與x軸有的公共點(diǎn)(相切).
、邸<0拋物線與x軸無(wú)公共點(diǎn).
(6)二次函數(shù)是否具有、最小值由a判斷.
①當(dāng)a>0時(shí),拋物線有最低點(diǎn),函數(shù)有最小值.
、诋(dāng)a<0時(shí),拋物線有點(diǎn),函數(shù)有值.
(7)的符號(hào)的判定:
表達(dá)式,請(qǐng)代值,對(duì)應(yīng)y值定正負(fù);
對(duì)稱軸,用處多,三種式子相約;
軸兩側(cè)判,左同右異中為0;
1的兩側(cè)判,左同右異中為0;
-1兩側(cè)判,左異右同中為0.
(8)函數(shù)圖象的平移:左右平移變x,左+右-;上下平移變常數(shù)項(xiàng),上+下-;平移結(jié)果先知道,反向平移是訣竅;平移方式不知道,通過(guò)頂點(diǎn)來(lái)尋找。
(9)對(duì)稱:關(guān)于x軸對(duì)稱的解析式為,關(guān)于y軸對(duì)稱的解析式為,關(guān)于原點(diǎn)軸對(duì)稱的解析式為,在頂點(diǎn)處翻折后的解析式為(a相反,定點(diǎn)坐標(biāo)不變)。
(10)結(jié)論:
、俣魏瘮(shù)(與x軸只有一個(gè)交點(diǎn)二次函數(shù)的頂點(diǎn)在x軸上Δ=0;
、诙魏瘮(shù)(的頂點(diǎn)在y軸上二次函數(shù)的圖象關(guān)于y軸對(duì)稱;
、鄱魏瘮(shù)(經(jīng)過(guò)原點(diǎn),則。
(11)二次函數(shù)的解析式:
、僖话闶剑(,用于已知三點(diǎn)。
、陧旤c(diǎn)式:,用于已知頂點(diǎn)坐標(biāo)或最值或?qū)ΨQ軸。
(3)交點(diǎn)式:,其中、是二次函數(shù)與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)。若已知對(duì)稱軸和在x軸上的截距,也可用此式。
圓柱體要領(lǐng):如果用垂直于軸的兩個(gè)平面去截圓柱面,那么兩個(gè)截面和圓柱面所圍成的幾何體叫做直圓柱,簡(jiǎn)稱圓柱。
圓柱體的定義
1、旋轉(zhuǎn)定義法:一個(gè)長(zhǎng)方形以一邊為軸順時(shí)針或逆時(shí)針旋轉(zhuǎn)一周,所經(jīng)過(guò)的空間叫做圓柱體。
2、平移定義法:以一個(gè)圓為底面,上或下移動(dòng)一定的距離,所經(jīng)過(guò)的空間叫做圓柱體。
性質(zhì) 1.圓柱的兩個(gè)圓面叫底面,周圍的面叫側(cè)面,一個(gè)圓柱體是由兩個(gè)底面和一個(gè)側(cè)面組成的。
2.圓柱體的兩個(gè)底面是完全相同的兩個(gè)圓面。兩個(gè)底面之間的距離是圓柱體的高。
3.圓柱體的側(cè)面是一個(gè)曲面,圓柱體的側(cè)面的展開(kāi)圖是一個(gè)長(zhǎng)方形或正方形。
圓柱的側(cè)面積=底面周長(zhǎng)x高,即:
S側(cè)面積=Ch=2πrh
底面周長(zhǎng)C=2πr=πd
圓柱的表面積=側(cè)面積+底面積x2=2πr2+Ch=2πr(r+h)
4.圓柱的體積=底面積x高
即V=S底面積×h=(π×r×r)h
5.等底等高的圓柱的體積是圓錐的3倍6.圓柱體可以用一個(gè)平行四邊形圍成
圓柱的表面積=圓柱的表面積=側(cè)面積+底面積x2
6.把圓柱沿底面直徑分成兩個(gè)同樣的部分,每一個(gè)部分叫半圓柱。這時(shí)與原來(lái)的圓柱比較,體積不變、表面積增加兩個(gè)直徑X高的長(zhǎng)方形。
7.圓柱的軸截面是直徑x高的長(zhǎng)方形,橫截面是與底面相同的圓。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
不等式與不等式組
1.定義:
用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。
2.性質(zhì):
①不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)方向不變。
、诓坏仁降膬蛇叾汲艘曰蛘叱砸粋(gè)正數(shù),不等號(hào)方向不變。
③不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。
3.分類:
、僖辉淮尾坏仁剑鹤笥覂蛇叾际钦,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
、谝辉淮尾坏仁浇M:
a.關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個(gè)不等式的解集的.公共部分,叫做這個(gè)一元一次不等式組的解集。
4.考點(diǎn):
①解一元一次不等式(組)
、诟鶕(jù)具體問(wèn)題中的數(shù)量關(guān)系列不等式(組)并解決簡(jiǎn)單實(shí)際問(wèn)題
、塾脭(shù)軸表示一元一次不等式(組)的解集
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
一、三角形的有關(guān)概念
1.三角形:由不在同一直線上的三條線段首尾順次相接組成的圖形叫三角形。
三角形的特征:①不在同一直線上;②三條線段;③首尾順次相接;④三角形具有穩(wěn)定性。
2.三角形中的三條重要線段:角平分線、中線、高
(1)角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。
(2)中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線。
(3)高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。
說(shuō)明:①三角形的角平分線、中線、高都是線段;②三角形的角平分線、中線都在三角形內(nèi)部且都交于一點(diǎn);三角形的高可能在三角形的內(nèi)部(銳角三角形)、外部(鈍角三角形),也可能在邊上(直角三角形),它們(或延長(zhǎng)線)相交于一點(diǎn)。
二、等腰三角形的性質(zhì)和判定
(1)性質(zhì)
1.等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫成"等邊對(duì)等角")。
2.等腰三角形的頂角的平分線,底邊上的中線,底邊上的高重合(簡(jiǎn)寫成"等腰三角形的三線合一")。
3.等腰三角形的兩底角的平分線相等(兩條腰上的中線相等,兩條腰上的高相等)。
4.等腰三角形底邊上的垂直平分線到兩條腰的距離相等。
5.等腰三角形的一腰上的高與底邊的夾角等于頂角的一半。
6.等腰三角形底邊上任意一點(diǎn)到兩腰距離之和等于一腰上的高(需用等面積法證明)。
7.等腰三角形是軸對(duì)稱圖形,只有一條對(duì)稱軸,頂角平分線所在的直線是它的對(duì)稱軸,等邊三角形有三條對(duì)稱軸。
(2)判定
在同一三角形中,有兩條邊相等的三角形是等腰三角形(定義)。
在同一三角形中,有兩個(gè)角相等的三角形是等腰三角形(簡(jiǎn)稱:等角對(duì)等邊)。
三、直角三角形和勾股定理
有一個(gè)角是直角的三角形是直角三角形,在直角三角形中,斜邊中線等于斜邊的一半;30度所對(duì)的直角邊等于斜邊的一半;直角三角形常用面積法求斜邊上的高。
勾股定理:直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。
勾股數(shù)一定是正整數(shù),常見(jiàn)勾股數(shù):3,4,5;5,12,13;6,8,10,;7,24,25;8,15,17;9,12,15。
方法總結(jié):
當(dāng)不明確直角三角形的斜邊長(zhǎng),應(yīng)把已知最長(zhǎng)邊分為直角邊和斜邊兩種情況討論。無(wú)理數(shù)在數(shù)軸上的表示和線段長(zhǎng)表示通常用到勾股定理。翻折題型常用勾股定理(口訣:翻折求邊找直角,勾股定理設(shè)未知量)
如果三角形的三邊長(zhǎng)a,b,c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形。勾股定理的逆定理,常用于判斷三角形的形狀,先確定最大邊(可以設(shè)為c)。
四、初中三角形中線定理
中線定理又稱阿波羅尼奧斯定理,是歐氏幾何的定理,表述三角形三邊和中線長(zhǎng)度關(guān)系。
定理內(nèi)容:三角形一條中線兩側(cè)所對(duì)邊平方和等于底邊的一半平方與該邊中線平方和的2倍。
中線的定義:任何三角形都有三條中線,而且這三條中線都在三角形的內(nèi)部,并交于一點(diǎn)。
由定義可知,三角形的中線是一條線段。
由于三角形有三條邊,所以一個(gè)三角形有三條中線。
且三條中線交于一點(diǎn)。這點(diǎn)稱為三角形的重心。
每條三角形中線分得的兩個(gè)三角形面積相等。
五、直角三角形的判定
判定1:有一個(gè)角為90°的三角形是直角三角形。
判定2:若a的平方+b的平方=c的平方,則以a、b、c為邊的三角形是以c為斜邊的直角三角形(勾股定理的逆定理)。
判定3:若一個(gè)三角形30°內(nèi)角所對(duì)的邊是某一邊的一半,那么這個(gè)三角形是以這條長(zhǎng)邊為斜邊的直角三角形。
判定4:兩個(gè)銳角互余的三角形是直角三角形。
判定5:證明直角三角形全等時(shí)可以利用HL,兩個(gè)三角形的斜邊長(zhǎng)對(duì)應(yīng)相等,以及一個(gè)直角邊對(duì)應(yīng)相等,則兩直角三角形全等。[定理:斜邊和一條直角對(duì)應(yīng)相等的兩個(gè)直角三角形全等。簡(jiǎn)稱為HL]
判定6:若兩直線相交且它們的斜率之積互為負(fù)倒數(shù),則這兩直線垂直。
判定7:在一個(gè)三角形中若它一邊上的中線等于這條中線所在邊的.一半,那么這個(gè)三角形為直角三角形。
六、勾股定理的逆定理
如果三角形三邊長(zhǎng)a,b,c滿足,那么這個(gè)三角形是直角三角形,其中c為斜邊。
、俟垂啥ɡ淼哪娑ɡ硎桥卸ㄒ粋(gè)三角形是否是直角三角形的一種重要方法,它通過(guò)“數(shù)轉(zhuǎn)化為形”來(lái)確定三角形的可能形狀,在運(yùn)用這一定理時(shí),可用兩小邊的平方和與較長(zhǎng)邊的平方作比較,若它們相等時(shí),以a,b,c為三邊的三角形是直角三角形;若時(shí),以a,b,c為三邊的三角形是鈍角三角形;若時(shí),以a,b,c為三邊的三角形是銳角三角形;
、诙ɡ碇衋,b,c及只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長(zhǎng)a,b,c滿足,那么以a,b,c為三邊的三角形是直角三角形,但是b為斜邊.
③勾股定理的逆定理在用問(wèn)題描述時(shí),不能說(shuō)成:當(dāng)斜邊的平方等于兩條直角邊的平方和時(shí),這個(gè)三角形是直角三角形。
七、三角形定理公式
三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊。
三角形的內(nèi)角和定理:三角形的三個(gè)內(nèi)角的和等于180度。
三角形的外角和定理:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)的和。
三角形的外角和定理推理:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。
三角形的三條角平分線交于一點(diǎn)(內(nèi)心)。
三角形的三邊的垂直平分線交于一點(diǎn)(外心)。
三角形中位線定理:三角形兩邊中點(diǎn)的連線平行于第三邊,并且等于第三邊的一半。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
1.如果把解題比做打仗,那么解題者的“兵器”就是數(shù)學(xué)基礎(chǔ)知識(shí),“兵力”就是數(shù)學(xué)基本方法,而調(diào)動(dòng)數(shù)學(xué)基礎(chǔ)知識(shí)、運(yùn)用數(shù)學(xué)思想方法的數(shù)學(xué)解題思想則正是“兵法”。
2.數(shù)學(xué)家存在的主要理由就是解決問(wèn)題。因此,數(shù)學(xué)的真正的組成部分是問(wèn)題和解答!皢(wèn)題是數(shù)學(xué)的心臟”。
3.問(wèn)題反映了現(xiàn)有水平與客觀需要的矛盾,對(duì)學(xué)生來(lái)說(shuō),就是已知和未知的矛盾。問(wèn)題就是矛盾。對(duì)于學(xué)生而言,問(wèn)題有三個(gè)特征:
(1)接受性:學(xué)生愿意解決并且具有解決它的知識(shí)基礎(chǔ)和能力基礎(chǔ)。
。2)障礙性:學(xué)生不能直接看出它的解法和答案,而必須經(jīng)過(guò)思考才能解決。
。3)探究性:學(xué)生不能按照現(xiàn)成的的套路去解,需要進(jìn)行探索,尋找新的處理方法。
4.練習(xí)型的問(wèn)題具有教學(xué)性,它的結(jié)論為數(shù)學(xué)家或教師所已知,其之成為問(wèn)題僅相對(duì)于教學(xué)或?qū)W生而言,包括一個(gè)待計(jì)算的答案、一個(gè)待證明的結(jié)論、一個(gè)待作出的圖形、一個(gè)待判斷的命題、一個(gè)待解決的實(shí)際問(wèn)題。
5.“問(wèn)題解決”有不同的解釋,比較典型的觀點(diǎn)可歸納為4種:
。1)問(wèn)題解決是心理活動(dòng)。面臨新情境、新課題,發(fā)現(xiàn)它與主客觀需要的矛盾而自己卻沒(méi)有現(xiàn)成對(duì)策時(shí),所引起的尋求處理辦法的一種活動(dòng)。
。2)問(wèn)題解決是一個(gè)探究過(guò)程。把“問(wèn)題解決”定義為“將先前已獲得的知識(shí)用于新的、不熟悉的情境的過(guò)程”。這就是說(shuō),問(wèn)題解決是一個(gè)發(fā)現(xiàn)的過(guò)程、探索的過(guò)程、創(chuàng)新的過(guò)程。
。3)問(wèn)題解決是一個(gè)學(xué)習(xí)目的!皩W(xué)習(xí)數(shù)學(xué)的主要目的在于問(wèn)題解決”。因而,學(xué)習(xí)怎樣解決問(wèn)題就成為學(xué)習(xí)數(shù)學(xué)的根本原因。此時(shí),問(wèn)題解決就獨(dú)立于特殊的問(wèn)題,獨(dú)立于一般過(guò)程或方法,也獨(dú)立于數(shù)學(xué)的具體內(nèi)容。
。4)問(wèn)題解決是一種生存能力。重視問(wèn)題解決能力的培養(yǎng)、發(fā)展問(wèn)題解決的能力,其目的之一是,在這個(gè)充滿疑問(wèn)、有時(shí)連問(wèn)題和答案都是不確定的世界里,學(xué)習(xí)生存的本領(lǐng)。
6.解題研究存在一些誤區(qū),首先一個(gè)表現(xiàn)是,用現(xiàn)成的例子說(shuō)明現(xiàn)成的觀點(diǎn),或用現(xiàn)成的觀點(diǎn)解釋現(xiàn)成的例子。其次一個(gè)表現(xiàn)是,長(zhǎng)期徘徊在一招一式的歸類上,缺少觀點(diǎn)上的提高或?qū)嵸|(zhì)性的突破。第三個(gè)表現(xiàn)是,多研究“怎樣解”,較少問(wèn)“為什么這樣解”。在這些誤區(qū)里,“解題而不立法、作答而不立論”。
7.人的思維依賴于必要的知識(shí)和經(jīng)驗(yàn),數(shù)學(xué)知識(shí)正是數(shù)學(xué)解題思維活動(dòng)的出發(fā)點(diǎn)與憑借。豐富的知識(shí)并加以優(yōu)化的結(jié)構(gòu)能為題意的本質(zhì)理解與思路的迅速尋找創(chuàng)造成功的條件。解題研究的一代宗師波利亞說(shuō)過(guò):“貨源充足和組織良好的知識(shí)倉(cāng)庫(kù)是一個(gè)解題者的重要資本”。
8.熟練掌握數(shù)學(xué)基礎(chǔ)知識(shí)的體系。對(duì)于中學(xué)數(shù)學(xué)解題來(lái)說(shuō),應(yīng)如數(shù)學(xué)家珍說(shuō)出教材的概念系統(tǒng)、定理系統(tǒng)、符號(hào)系統(tǒng)。還應(yīng)掌握中學(xué)數(shù)學(xué)競(jìng)賽涉及的基礎(chǔ)理論。深刻理解數(shù)學(xué)概念、準(zhǔn)確掌握數(shù)學(xué)定理、公式和法則。熟悉基本規(guī)則和常用的方法,不斷積累數(shù)學(xué)技巧。
9.數(shù)學(xué)的本質(zhì)活動(dòng)是思維。思維的對(duì)象是概念,思維的方式是邏輯。當(dāng)這種思維與新事物接觸時(shí),將出現(xiàn)“相容”和“不容”的兩種可能。出現(xiàn)“相容”時(shí),產(chǎn)生新結(jié)果,且被原概念吸收,并發(fā)展成新概念;當(dāng)出現(xiàn)“不容”時(shí),則產(chǎn)生了所謂的問(wèn)題。這時(shí),思維出現(xiàn)迂回,甚至?xí)簳r(shí)退回原地,將原概念擴(kuò)大或?qū)⒃壿嬜兪剑钡叫滤季S與事物相容為止。至此,也產(chǎn)生新的.結(jié)果,也被原思維吸收。這就是一個(gè)思維活動(dòng)的全過(guò)程。
10.解題能力,表現(xiàn)于發(fā)現(xiàn)問(wèn)題、分析問(wèn)題、解決問(wèn)題的敏銳、洞察力與整體把握。其主要成分是3種基本的數(shù)學(xué)能力(運(yùn)算能力、邏輯思維能力、空間想象能力),核心是能否掌握正確的思維方法,包括邏輯思維與非邏輯思維。其基本要求包括:
。1)掌握解題的科學(xué)程序;
。2)掌握數(shù)學(xué)中各種常用的思維方法,如觀察、試驗(yàn)、歸納、演繹、類比、分析、綜合、抽象、概括等;
。3)掌握解題的基本策略,能“因題制宜”地選擇對(duì)口的解題思路,使用有效的解題方法、調(diào)動(dòng)精明的解題技巧;
。4)具有敏銳的直覺(jué)。應(yīng)該明白,我們的數(shù)學(xué)解題活動(dòng)是在縱橫交錯(cuò)的數(shù)學(xué)關(guān)系中進(jìn)行的,在這個(gè)過(guò)程中,我們從一種可能性過(guò)渡到另一種可能性時(shí),并非對(duì)每一個(gè)數(shù)學(xué)細(xì)節(jié)都洞察無(wú)遺,并非總能借助于“三段論”的橋梁,而是在短時(shí)間內(nèi)朦朧地插上幻想的翅膀,直接飛翔到最近的可能性上,從而達(dá)到對(duì)某種數(shù)學(xué)對(duì)象的本質(zhì)領(lǐng)悟:
11.解題具有實(shí)踐性與探索性的特征,“就像游泳,滑雪或彈鋼琴一樣,只能通過(guò)模仿和實(shí)踐來(lái)學(xué)到它……你想學(xué)會(huì)游泳,你就必須下水,你想成為解題的能手,你就必須去解題”,“尋找題解,不能教會(huì),而只能靠自己學(xué)會(huì)”。
12.所謂解題經(jīng)驗(yàn),就是某些數(shù)學(xué)知識(shí)、某些解題方法與某些條件的有序組合。成功是一種有效的有序組合,失敗是一種無(wú)效的無(wú)序組合(它從反面向我們提供有效的有序組合)。成功經(jīng)驗(yàn)所獲得的有序組合,就好像建筑上的預(yù)制構(gòu)件(或稱為思維組塊),遇到合適的場(chǎng)合,可以原封不動(dòng)地把它搬上去。
13.認(rèn)為解題純粹是一種智能活動(dòng)顯然是錯(cuò)誤的;決心與情緒所起的作用非常重要。教育學(xué)生解題是一種意志教育。當(dāng)學(xué)生求解那些對(duì)他來(lái)說(shuō)并不太容易的題目時(shí),他學(xué)會(huì)了敗而不餒,學(xué)會(huì)了贊賞微小的進(jìn)展,學(xué)會(huì)了等待主要念頭的萌動(dòng),學(xué)會(huì)了當(dāng)主要念頭出現(xiàn)后如何全力以赴,直撲問(wèn)題的核心或主干;當(dāng)一旦突破關(guān)卡,如何去占領(lǐng)問(wèn)題的至高點(diǎn),并冷靜地府視全局,從而得到問(wèn)題的完善解決。如果學(xué)生在解題過(guò)程中沒(méi)有機(jī)會(huì)嘗盡為求解而奮斗的喜怒哀樂(lè),那么他的數(shù)學(xué)解題訓(xùn)練就在最重要的地方失敗了。
14.教師的例題教學(xué)要暴露自己思維的真實(shí)過(guò)程,老師備課時(shí),遇上的曲折和錯(cuò)誤不能隨草紙扔到廢紙堆。如果教師掩瞞了解題中的曲折,自己在講臺(tái)裝神弄巧,得心應(yīng)手,左右逢源,把自己打扮成超人,將給學(xué)生的學(xué)習(xí)產(chǎn)生誤導(dǎo)。這樣的教師越高明,學(xué)生越自卑。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9
中位線概念
(1)三角形中位線定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。
(2)梯形中位線定義:連接梯形兩腰中點(diǎn)的線段叫做梯形的中位線。
注意(1)要把三角形的`中位線與三角形的中線區(qū)分開(kāi)。三角形中線是連接一頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段,而三角形中位線是連接三角形兩邊中點(diǎn)的線段。
(2)梯形的中位線是連接兩腰中點(diǎn)的線段而不是連結(jié)兩底中點(diǎn)的線段。
(3)兩個(gè)中位線定義間的聯(lián)系:可以把三角形看成是上底為零時(shí)的梯形,這時(shí)三角形的中位線就變成梯形的中位線。
中位線定理
(1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.
(2)梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半.
中位線定理推廣
三角形有三條中位線,首尾相接時(shí),每個(gè)小三角形面積都等于原三角形的四分之一,這四個(gè)三角形都互相全等。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10
第一章實(shí)數(shù)
考點(diǎn)一、實(shí)數(shù)的概念及分類(3分)
1、實(shí)數(shù)的分類
正有理數(shù)
有理數(shù)零有限小數(shù)和無(wú)限循環(huán)小數(shù)實(shí)數(shù)負(fù)有理數(shù)正無(wú)理數(shù)
無(wú)理數(shù)無(wú)限不循環(huán)小數(shù)負(fù)無(wú)理數(shù)
整數(shù)包括正整數(shù)、零、負(fù)整數(shù)。
正整數(shù)又叫自然數(shù)。
正整數(shù)、零、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱為有理數(shù)。
2、無(wú)理數(shù)
在理解無(wú)理數(shù)時(shí),要抓住“無(wú)限不循環(huán)”這一時(shí)之,歸納起來(lái)有四類:
。1)開(kāi)方開(kāi)不盡的數(shù),如7,32等;
(2)有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù),如
。3)有特定結(jié)構(gòu)的數(shù),如0.1010010001等;
(4)某些三角函數(shù),如sin60o等
考點(diǎn)二、實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對(duì)值(3分)
1、相反數(shù)
實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,如果a與b互為相反數(shù),則有a+b=0,a=b,反之亦成立。
2、絕對(duì)值
一個(gè)數(shù)的絕對(duì)值就是表示這個(gè)數(shù)的點(diǎn)與原點(diǎn)的距離,|a|≥0。零的絕對(duì)值時(shí)它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。正數(shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù),兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。
3、倒數(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒(méi)有倒數(shù)。
考點(diǎn)三、平方根、算數(shù)平方根和立方根(310分)
1、平方根
如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)就叫做a的平方根(或二次方跟)。一個(gè)數(shù)有兩個(gè)平方根,他們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒(méi)有平方根。正數(shù)a的平方根記做“。a”
π+8等;
2、算術(shù)平方根
正數(shù)a的正的平方根叫做a的算術(shù)平方根,記作“a”。正數(shù)和零的算術(shù)平方根都只有一個(gè),零的算術(shù)平方根是零。a(a0)a0
a2a;注意a的雙重非負(fù)性:
-a(a考點(diǎn)六、實(shí)數(shù)的運(yùn)算(做題的基礎(chǔ),分值相當(dāng)大)
1、加法交換律abba
2、加法結(jié)合律(ab)ca(bc)
3、乘法交換律abba
4、乘法結(jié)合律(ab)ca(bc)
5、乘法對(duì)加法的分配律a(bc)abac
6、實(shí)數(shù)混合運(yùn)算時(shí),對(duì)于運(yùn)算順序有什么規(guī)定?
實(shí)數(shù)混合運(yùn)算時(shí),將運(yùn)算分為三級(jí),加減為一級(jí)運(yùn)算,乘除為二能為運(yùn)算,乘方為三級(jí)運(yùn)算。同級(jí)運(yùn)算時(shí),從左到右依次進(jìn)行;不是同級(jí)的混合運(yùn)算,先算乘方,再算乘除,而后才算加減;運(yùn)算中如有括號(hào)時(shí),先做括號(hào)內(nèi)的運(yùn)算,按小括號(hào)、中括號(hào)、大括號(hào)的順序進(jìn)行。
7、有理數(shù)除法運(yùn)算法則就什么?
兩有理數(shù)除法運(yùn)算法則可用兩種方式來(lái)表述:第一,除以一個(gè)不等于零的數(shù),等于乘以這個(gè)數(shù)的倒數(shù);第二,兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除。零除以任何一個(gè)不為零的`數(shù),商都是零。
8、什么叫有理數(shù)的乘方??jī)?底?shù)?指數(shù)?
相同因數(shù)相乘積的運(yùn)算叫乘方,乘方的結(jié)果叫冪,相同因數(shù)的個(gè)數(shù)叫指數(shù),這個(gè)因數(shù)叫底數(shù)。記作:an
9、有理數(shù)乘方運(yùn)算的法則是什么?
負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù)。零的任何正整數(shù)冪都是零。
10、加括號(hào)和去括號(hào)時(shí)各項(xiàng)的符號(hào)的變化規(guī)律是什么?
去(加)括號(hào)時(shí)如果括號(hào)外的因數(shù)是正數(shù),去(加)括號(hào)后式子各項(xiàng)的符號(hào)與原括號(hào)內(nèi)的式子相應(yīng)各項(xiàng)的符號(hào)相同;括號(hào)外的因數(shù)是負(fù)數(shù)去(加)括號(hào)后式子各項(xiàng)的符號(hào)與原括號(hào)內(nèi)式子相應(yīng)各項(xiàng)的符號(hào)相反。
平行線與相交線
知識(shí)要點(diǎn)
一.余角、補(bǔ)角、對(duì)頂角
1,余角:如果兩個(gè)角的和是直角,那么稱這兩個(gè)角互為余角.
2,補(bǔ)角:如果兩個(gè)角的和是平角,那么稱這兩個(gè)角互為補(bǔ)角.
3,對(duì)頂角:如果兩個(gè)角有公共頂點(diǎn),并且它們的兩邊互為反向延長(zhǎng)線,這樣的兩個(gè)角叫做對(duì)頂角.
4,互為余角的有關(guān)性質(zhì):
、佟1+∠2=90°,則∠1、∠2互余;反過(guò)來(lái),若∠1,∠2互余,
則∠1+∠2=90°;②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠3=90°,則∠2=∠3.
5,互為補(bǔ)角的有關(guān)性質(zhì):①若∠A+∠B=180°,則∠A、∠B互補(bǔ);反過(guò)來(lái),若∠A、∠B互補(bǔ),則∠A+∠B=180°.
、谕腔虻冉堑难a(bǔ)角相等.如果∠A+∠C=180°,∠A+∠B=180°,則∠B=∠C.
6,對(duì)頂角的性質(zhì):對(duì)頂角相等.
二.同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的認(rèn)識(shí)及平行線的性質(zhì)
7,同一平面內(nèi)兩條直線的位置關(guān)系是:相交或平行.
8,“三線八角”的識(shí)別:
三線八角指的是兩條直線被第三條直線所截而成的八個(gè)角.
正確認(rèn)識(shí)這八個(gè)角要抓。和唤俏恢孟嗤,即“同旁”和“同規(guī)”;內(nèi)錯(cuò)角要抓住“內(nèi)部,兩旁”;同旁內(nèi)角要抓住“內(nèi)部、同旁”.三.平行線的性質(zhì)與判定
9,平行線的定義:在同一平面內(nèi),不相交的兩條直線是平行線.
10,平行線的性質(zhì):兩條平行線被第三條直線所截,同位角相等,內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ).
11,過(guò)直線外一點(diǎn)有且只有一條直線和已知直線平行.
12,兩條平行線之間的距離是指在一條直線上任意找一點(diǎn)向另一條直線作垂線,垂線段的長(zhǎng)度就是兩條平行線之間的距離.
13,如果兩條直線都與第三條直線平行,那么這兩條直線互相平行.
14,平行線的判定:兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;如果內(nèi)錯(cuò)角相等.那么這兩條直線平行;如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行.這三個(gè)條件都是由角的數(shù)量關(guān)系(相等或互補(bǔ))來(lái)確定直線的位置關(guān)系(平行)的,因此能否找到兩直線平行的條件,關(guān)鍵是能否正確地找到或識(shí)別出同位角,內(nèi)錯(cuò)角或同旁內(nèi)角.
15,常見(jiàn)的幾種兩條直線平行的結(jié)論:
。1)兩條平行線被第三條直線所截,一組同位角的角平分線平行;
。2)兩條平行線被第三條直線所截,一組內(nèi)錯(cuò)角的角平分線互相平行.
四.尺規(guī)作圖
16,只用沒(méi)有刻度的直尺和圓規(guī)的作圖的方法稱為尺規(guī)作圖.用尺規(guī)可以作一條線段等于已知線段,也可以作一個(gè)角等于已知角.利用這兩種兩種基本作圖可以作出兩條線段的和或差,也可以作出兩個(gè)角的和或差.
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11
第十一章:全等三角形復(fù)習(xí)
一全等三角形
1、什么是全等三角形?一個(gè)三角形經(jīng)過(guò)哪些變化可以得到它的全等形?能夠完全重合的兩個(gè)三角形叫做全等三角形。一個(gè)三角形經(jīng)過(guò)平移、翻折、旋轉(zhuǎn)可以得到它的全等形。
2、全等三角形有哪些性質(zhì)?
。1):全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等。
(2):全等三角形的周長(zhǎng)相等、面積相等。
。3):全等三角形的對(duì)應(yīng)邊上的對(duì)應(yīng)中線、角平分線、高線分別相等。
3、一般三角形全等的條件(包括直角三角形):(1)定義(重合)法;
(2)SSS:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等;
(3)SAS:兩邊和它們的夾角對(duì)應(yīng)相等兩個(gè)三角形全等;
(4)ASA:兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等;
(5)AAS:兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。解題常用后面四種方法。直角三角形全等特有的條件:HL(斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等)。
4、證明兩個(gè)三角形全等的基本思路:
(1)已知兩邊:a、找第三邊(SSS);b、找?jiàn)A角(SAS);c、找是否有直角(HL)。
(2)已知一邊一角:①已知一邊和他的鄰角:a、找這邊的另一個(gè)鄰角(ASA);b、找這個(gè)角的另一個(gè)邊(SAS);c、找這邊的對(duì)角(AAS)。
、谝阎獌山牵篴、找兩角的夾邊(ASA);b、找?jiàn)A邊外的任意邊(AAS)。
二角平分線
1、角平分線的性質(zhì):角的平分線上的點(diǎn)到角的兩邊的距離相等。
2、角平分線的判定:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上。
用法1:∵ QD⊥OA,QE⊥OB用法2:∵ QD⊥OA,QE⊥OB,QD=QE。
∴點(diǎn)Q在∠AOB的平分線上。 ∴點(diǎn)Q在∠AOB的平分線上
∴ QD=QE
3、總結(jié)提高:學(xué)習(xí)全等三角形應(yīng)注意以下幾個(gè)問(wèn)題
。1)要正確區(qū)分“對(duì)應(yīng)邊”與“對(duì)邊”,“對(duì)應(yīng)角”與“對(duì)角”的不同含義;
。2)表示兩個(gè)三角形全等時(shí),表示對(duì)應(yīng)頂點(diǎn)的字母要寫在對(duì)應(yīng)的位置上;
(3)要記住“有三個(gè)角對(duì)應(yīng)相等”或“有兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等”的兩個(gè)三角形不一定全等;
。4)時(shí)刻注意圖形中的隱含條件,如“公共角” 、“公共邊”、“對(duì)頂角”。
練習(xí):
練習(xí)1:如圖,D在AB上,E在AC上,AB=AC ,∠B=∠C,試問(wèn)AD=AE嗎?
2、如圖,OB⊥AB,OC⊥AC,垂足為B,C,OB=OC,AO平分∠BAC嗎?
3、如圖,小明不慎將一塊三角形模具打碎為兩塊,他是否可以只帶其中的一塊碎片到商店去,就能配一塊與原來(lái)一樣的三角形模具呢?如果可以,帶那塊去合適?為什么?
4、如圖,已知AC∥EF,DE∥BA,若使△ABC≌△EDF,還需要補(bǔ)
充的條件可以是
5、已知AC=DB, ∠1=∠2.求證: ∠A=∠D
6、如圖,已知,AB∥DE,AB=DE,AF=DC。請(qǐng)問(wèn)圖中有那幾對(duì)全等三角形?請(qǐng)任選一對(duì)給予證明。
7、如圖,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD嗎?為什么?
8、已知,△ABC和△ECD都是等邊三角形,且點(diǎn)B,C,D在一條直線上求證:BE=AD
9、求證:有一條直角邊和斜邊上的高對(duì)應(yīng)相等的兩個(gè)直角三角形全等。
10、將紙片△ABC沿DE折疊,點(diǎn)A落在點(diǎn)F處,已知∠1+∠2=100°,則∠A=度;
11、如圖6,已知:∠A=90°,AB=BD,ED⊥BC于D.求證:AE=ED
三軸對(duì)稱
1、把一個(gè)圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個(gè)圖形就叫做軸對(duì)稱圖形。這條直線就是它的對(duì)稱軸。這時(shí)我們也說(shuō)這個(gè)圖形關(guān)于這條直線(成軸)對(duì)稱。
2、把一個(gè)圖形沿著某一條直線折疊,如果它能與另一個(gè)圖形完全重合,那么就說(shuō)這兩個(gè)圖關(guān)于這條直線對(duì)稱。這條直線叫做對(duì)稱軸。折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做對(duì)稱點(diǎn)。
3、軸對(duì)稱的性質(zhì):①關(guān)于某直線對(duì)稱的兩個(gè)圖形是全等形。
②如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。
、圯S對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。
、苋绻麅蓚(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。
4、線段的垂直平分線:經(jīng)過(guò)線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。
性質(zhì):線段垂直平分線上的點(diǎn)與這條線段的兩個(gè)端點(diǎn)的.距離相等(純粹性)。
逆定理:與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在線段的垂直平分線上。(完備性)
線段垂直平分線的集合定義:線段垂直平分線可以看作是與線段兩個(gè)端點(diǎn)距離相等的所有點(diǎn)的集合。
5、用坐標(biāo)表示軸對(duì)稱小結(jié):
在平面直角坐標(biāo)系中,關(guān)于x軸對(duì)稱的點(diǎn)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù).關(guān)于y軸對(duì)稱的點(diǎn)橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等。
利用軸對(duì)稱變換作圖:要在燃?xì)夤艿繪上修建一個(gè)泵站,分別向A、B兩鎮(zhèn)供氣,泵站修在管道什么地方,可使所用的輸氣管道線最短?
6、等腰三角形
1.等腰三角形的性質(zhì)
①.等腰三角形的兩個(gè)底角相等。(等邊對(duì)等角)
②.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)
2、等腰三角形的判定:
如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等。(等角對(duì)等邊)。
7、等邊三角形
。1)等邊三角形的性質(zhì):等邊三角形的三個(gè)角都相等,并且每一個(gè)角都等于600 。
(2)等邊三角形的判定:
、偃齻(gè)角都相等的三角形是等邊三角形。②有一個(gè)角是60度的等腰三角形是等邊三角形。
。3)在直角三角形中,如果一個(gè)銳角等于300,那么它所對(duì)的直角邊等于斜邊的一半。
練習(xí)1:在△ABC中,AB=AC時(shí),(1)∵AD⊥BC
∴∠ ____= ∠_____;____=____
(2) ∵AD是中線
∴____⊥____; ∠_____= ∠_____
(3) ∵ AD是角平分線
∵_(dá)___ ⊥____;_____=____
2、如圖1,AD是△ABC的角平分線,BE⊥AD交AD的延長(zhǎng)線于E,EF∥AC交AB于F,求證:AF=FB.
3、某等腰三角形的兩條邊長(zhǎng)分別為3 cm和6 cm,則它的周長(zhǎng)為:
4、等腰三角形的一個(gè)角為30°,則底角為_(kāi)__________.
5、已知:如圖5,AB=AC,BD⊥AC.求證:∠DBC=1/2∠A。
6、如圖6,在△ABC中,AB=AC,在AB上取一點(diǎn)E,在AC延長(zhǎng)線上取一點(diǎn)F,使BE=CF,EF交BC于G,EM∥CF.求證:EG=FG.
第十四章整式和因式分解
一、冪的4個(gè)運(yùn)算性質(zhì)
1、同底數(shù)冪的乘法:am · an = am+n
2、同底數(shù)冪的除法:am÷an =am-n;a0=1(a≠0)
3、冪的乘方: (am )n = amn
4、積的乘方: (ab)n = anbn
如:(1)(-1)20xx+π0= (x-3)x+2=1,求x.
。2)若10x=5,10y=4,求102x+3y-1的值.
。3)計(jì)算:0.251000×(-2)20xx
二、乘法公式
1、平方差公式:(a+b)(a-b)=a2-b2
2、完全平方公式:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
3、三數(shù)和的平方公式:(a+b+c)2=a2+b2 +c2+2ab+2ac+2bc
計(jì)算:(3x+4)(3x-4)-(2x+3)(3x-2)
(1-x)(1+x)(1+x2)(1-x4)
(x+4y-6z)(x-4y+6z)
(x-2y+3z)2
簡(jiǎn)便計(jì)算:(1)98×102
(2)2992
(3) 20062-20xx×20xx
活學(xué)活用:已知a+b=5,ab= -2,求(1)a2+b2(2)a-b
三、因式分解
因式分解方法:一提二套三看
一提:提公因式提負(fù)號(hào)
二套:套平方差、完全平方、十字相乘法
三看:看是否分解完全。
如:x5-16x -4a 2+4ab- b 2 m 2(m-2)-4m(2-m) 4a2- 16(a-2) 2
a、多項(xiàng)式x2-4x+4、x2-4的公因式是
b、已知x2-2mx+16是完全平方式則m為
c、已知x2-8x+m是完全平方式,則m=
d、已知x2-8x+m2是完全平方式,則m=
e、如果(2a+2b+1)(2a+2b-1)=63,那么a+b=
f、如果(a2 +b2 )(a2 +b2 -1)=20,那么a2 +b2 =_____
簡(jiǎn)便計(jì)算:(-2)20xx+(-2)20xx
20xx+20052-20062
3992+399
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12
在日常的練習(xí)、作業(yè)和考試中,學(xué)生都會(huì)或多或少地出現(xiàn)一些做錯(cuò)的題目,而對(duì)待錯(cuò)題的態(tài)度不同,學(xué)習(xí)的效果就會(huì)有很大的差別。丁老師就來(lái)告訴同學(xué)們?cè)趺磥?lái)用好我們的錯(cuò)題吧!
錯(cuò)題主要涉及錯(cuò)題收集和存檔、錯(cuò)題改正、錯(cuò)題分享、錯(cuò)題應(yīng)用四個(gè)環(huán)節(jié)。
一、錯(cuò)題收集和存檔:
這里的錯(cuò)題,不僅指各級(jí)各類數(shù)學(xué)考試中的錯(cuò)題,還包括平時(shí)數(shù)學(xué)作業(yè)中做錯(cuò)的題目。最好把錯(cuò)題都摘錄到一個(gè)固定的本子上面(錯(cuò)題本),便于自己以后查閱。即使是曾經(jīng)錯(cuò)了而現(xiàn)在理解了的題目也最好登記在冊(cè),它們形成獨(dú)具個(gè)性的學(xué)習(xí)軌跡,有利于知識(shí)的理解、識(shí)記、儲(chǔ)存和提取。
在進(jìn)行錯(cuò)題收集的時(shí)候,一定要注意分類。分類的方法很多,可以按照錯(cuò)題原因分類、按照錯(cuò)題中所隱含知識(shí)的章節(jié)進(jìn)行分類,甚至還可以按照題型進(jìn)行分類。這樣整理好的錯(cuò)題是系統(tǒng)的,到最后復(fù)習(xí)時(shí)就有比較強(qiáng)的針對(duì)性。
二、錯(cuò)題改正:
收集錯(cuò)題以后,接下來(lái)就是改錯(cuò)了,這是錯(cuò)題管理的目的。學(xué)生要爭(zhēng)取自己獨(dú)立對(duì)錯(cuò)題進(jìn)行分析,然后找出正確的解答,并訂正。在自己獨(dú)立思考的基礎(chǔ)上,如果還是得不到答案,這時(shí)候就需要積極地求助他人了,可以是學(xué)得比較好的同學(xué),也可以是老師。讓他們幫自己分析原因,在他們的啟發(fā)引導(dǎo)下進(jìn)行改正。找到出錯(cuò)的癥結(jié)所在,最好能在錯(cuò)題后面附上自己的心得體會(huì),可以依次回答以下問(wèn)題:
這道題目錯(cuò)在什么地方?
這道題目為什么做錯(cuò)了?(錯(cuò)在計(jì)算、化簡(jiǎn)?錯(cuò)在概念理解?錯(cuò)在理解題意?錯(cuò)在邏輯關(guān)系?錯(cuò)在以偏概全?錯(cuò)在粗心大意?錯(cuò)在思維品質(zhì)?錯(cuò)在類比?等等。)
這道題目正確的做法是什么?
這道題目有沒(méi)有其它解法?哪種方法更好?
錯(cuò)題改正這個(gè)過(guò)程其實(shí)就是學(xué)生再學(xué)習(xí)、再認(rèn)識(shí)、再提高的過(guò)程,它使學(xué)生對(duì)易出錯(cuò)的知識(shí)的理解更全面透徹,掌握更加牢固,同時(shí)也提高了學(xué)生自主學(xué)習(xí)的能力。一般意義上,任何學(xué)習(xí)都需要反思,錯(cuò)題改正是反思的具體途徑之一。
整理錯(cuò)題并不是為了做得好看,是為了實(shí)用,對(duì)自己的學(xué)習(xí)有幫助。因而沒(méi)有固定的標(biāo)準(zhǔn),關(guān)鍵要符合學(xué)生自己的習(xí)慣。但是學(xué)生一定要抽時(shí)間翻閱自己辛勤勞動(dòng)的結(jié)晶,對(duì)其中的錯(cuò)題進(jìn)行溫習(xí),這樣做有時(shí)候可以收到意想不到的效果,會(huì)有新的`體會(huì)。其實(shí)整理好的錯(cuò)題集就相當(dāng)于是以前做過(guò)的大量習(xí)題中的精華薈萃(這要建立在學(xué)生認(rèn)真整理的基礎(chǔ)上),是最適合學(xué)生個(gè)人的學(xué)習(xí)資料,比任何一本參考書(shū)、習(xí)題集都有用,有價(jià)值。
三、錯(cuò)題分享:
在現(xiàn)行的學(xué)習(xí)體制下,學(xué)生之間的競(jìng)爭(zhēng)意識(shí)很強(qiáng),但是主動(dòng)交流分享意識(shí)非常薄弱。其實(shí)同學(xué)就是一個(gè)巨大的學(xué)習(xí)資源庫(kù),只要每個(gè)學(xué)生都愿意敞開(kāi)心扉,真誠(chéng)地交流,相互扶持,相互幫助和鼓勵(lì),學(xué)生就可以從同學(xué)身上學(xué)到很多東西。正所謂“你有一種思想,我有一種思想,交流之后我們就同時(shí)擁有了兩種思想”,學(xué)生之間的錯(cuò)題集也可以相互交流。這是因?yàn)槊總(gè)學(xué)生出錯(cuò)的原因各不相同,所以每個(gè)人建立的錯(cuò)題集也不同,通過(guò)相互交流可以從別人的錯(cuò)誤中汲取教訓(xùn),拓展自己的視野,得到啟發(fā),以警示自己不犯同樣錯(cuò)誤。不同的人從相同的題目中得到的是不同的體會(huì),通過(guò)交流大家就可以領(lǐng)略到知識(shí)的不同側(cè)面,從而對(duì)知識(shí)掌握得更加牢固。在交流的氛圍中,學(xué)生改變了學(xué)習(xí)方式,增強(qiáng)了學(xué)習(xí)數(shù)學(xué)的積極性。
四、錯(cuò)題應(yīng)用:
將錯(cuò)題收集在一起并改正,還不能完全說(shuō)明學(xué)生對(duì)這一知識(shí)點(diǎn)的漏洞就補(bǔ)好了。最好的狀況是對(duì)于每一個(gè)錯(cuò)題,學(xué)生自己還必須查找資料,找出與之相同或相關(guān)的題型,進(jìn)行練習(xí)解答。如果沒(méi)有困難,則說(shuō)明學(xué)生對(duì)這一知識(shí)點(diǎn)可能已經(jīng)掌握。此時(shí),學(xué)生可以嘗試著進(jìn)行更高難度的事情:錯(cuò)題改編。將題目中的條件和結(jié)論換一下,還成立嗎?把條件減弱或者把結(jié)論加強(qiáng),命題還成立嗎?或者嘗試著編一道類似的題目,還能做嗎?經(jīng)歷了這么一個(gè)思維洗禮,學(xué)生對(duì)知識(shí)的理解會(huì)更深刻,對(duì)方法的把握會(huì)更透徹,不管條件怎么變,他們基本上都可以應(yīng)付自如了。一般情況下,學(xué)生在學(xué)?赡軟](méi)有這么充裕的時(shí)間來(lái)做這樣的事情,但是學(xué)生之間相互協(xié)助,每人找一個(gè)類型的題目,或者每人提出一個(gè)想法,全班合起來(lái)就基本找全了所有的題型,改編了很多道類似的題目。
錯(cuò)題管理有助于學(xué)生的數(shù)學(xué)學(xué)習(xí)。但是,錯(cuò)題管理并不是學(xué)習(xí)的目的,而是幫助學(xué)生進(jìn)行有效學(xué)習(xí)的一種手段。制作錯(cuò)題集更不是任務(wù),不一定要做得精致、全面,它只是一種訓(xùn)練思維的載體。最關(guān)鍵的是,學(xué)生和老師不能輕易放過(guò)錯(cuò)題,徹底弄清楚錯(cuò)題所反映的問(wèn)題,學(xué)以致用。在反思學(xué)習(xí)的過(guò)程中完善自己的知識(shí)結(jié)構(gòu),提升解決問(wèn)題的能力,實(shí)現(xiàn)有效學(xué)習(xí)和有效教學(xué)的終極目標(biāo)。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13
一、 重要概念
1。數(shù)的分類及概念
數(shù)系表:
說(shuō)明:“分類”的原則:1)相稱(不重、不漏)
2)有標(biāo)準(zhǔn)
2。非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x≥0)
常見(jiàn)的非負(fù)數(shù)有:
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。
3。倒數(shù): ①定義及表示法
、谛再|(zhì):A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a1時(shí),1/a1;D。積為1。
4。相反數(shù): ①定義及表示法
②性質(zhì):A.a≠0時(shí),a≠-a;B.a與-a在數(shù)軸上的位置;C。和為0,商為-1。
5。數(shù)軸:①定義(“三要素”)
②作用:A。直觀地比較實(shí)數(shù)的大小;B。明確體現(xiàn)絕對(duì)值意義;C。建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
6。奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7。絕對(duì)值:①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的.點(diǎn)到原點(diǎn)的距離。
、讴│≥0,符號(hào)“││”是“非負(fù)數(shù)”的標(biāo)志;③數(shù)a的絕對(duì)值只有一個(gè);④處理任何類型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號(hào)。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14
1、隨機(jī)事件
必然事件:在一定條件下,一定會(huì)發(fā)生的事件稱為必然事件。
不可能事件:在一定條件下,一定不會(huì)發(fā)生的事件稱為不可能事件。
必然事件和不可能事件統(tǒng)稱確定性事件。
隨機(jī)事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱為隨機(jī)事件。
2、概率
(1)概率的性質(zhì):P(必然事件)=1;P(不可能事件)=0;0
(2)一般地,如果在一次試驗(yàn)中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包括其中的m種結(jié)果,那么事件A發(fā)生的概率。
1、能通過(guò)列表、畫(huà)樹(shù)狀圖等方法列出簡(jiǎn)單隨機(jī)事件所有可能的結(jié)果,以及指定事件發(fā)生的所有可能結(jié)果,了解事件的概率。
2、知道通過(guò)大量的重復(fù)試驗(yàn),可以用頻率來(lái)估計(jì)概率。
1、必然事件、不可能事件、隨機(jī)事件的辨析。
2、簡(jiǎn)單事件的概率求解。
3、用頻率估計(jì)概率。
4、用概率解決實(shí)際問(wèn)題。
5、概率與其它知識(shí)的綜合運(yùn)用。
1、下列事件中是必然事件的是( )
A、拉薩明日刮西北風(fēng) B、拋擲一枚硬幣,落地后正面朝上
C、當(dāng)x是實(shí)數(shù)時(shí),x2≥0 D、三角形內(nèi)角和是360°
2、下列說(shuō)法正確的是( )
A、拉薩市“明天降雨的概率是75%”表示明天有75%的時(shí)間會(huì)降雨
B、隨機(jī)拋擲一枚均勻的硬幣,落地后正面一定朝上
C、在一次抽獎(jiǎng)活動(dòng)中,“中獎(jiǎng)的概率是1%”表示抽獎(jiǎng)100次就一定會(huì)中獎(jiǎng)
D、在平面內(nèi),平行四邊形的兩條對(duì)角線一定相交
3、下列事件是不可能事件的是( )
A、一個(gè)角和它的余角的和是90°
B、接連擲10次骰子都是6點(diǎn)朝上
C、一個(gè)有理數(shù)和它的倒數(shù)之和等于0
D、一個(gè)有理數(shù)小于它的倒數(shù)
4、下列事件中是必然事件的是( )
A、從一個(gè)裝有藍(lán)、白兩色球的缸里摸出一個(gè)球,摸出的球是白球
B、扎西的自行車輪胎被釘子扎壞
C、卓瑪期末考試數(shù)學(xué)成績(jī)一定得滿分
D、將菜籽油滴入水中,菜籽油會(huì)浮在水面上
5、下列說(shuō)法中,正確的是( )
A、生活中,如果一個(gè)事件不是不可能事件,那么它就必然發(fā)生
B、生活中,如果一個(gè)事件可能發(fā)生,那么它就是必然事件
C、生活中,如果一個(gè)事件發(fā)生的可能性很大,那么它也可能不發(fā)生
D、生活中,如果一個(gè)事件不是必然事件,那么它就不可能發(fā)生
6、同時(shí)投擲兩枚質(zhì)地均勻的正方體骰子,骰子的六個(gè)面上分別刻有1到6的點(diǎn)數(shù)。下列事件中是不可能事件的是( )
A、點(diǎn)數(shù)之和為12 B、點(diǎn)數(shù)之和小于3
C、點(diǎn)數(shù)之和大于4且小于8 D、點(diǎn)數(shù)之和為13
7、某個(gè)事件發(fā)生的概率是,這意味著( )
A、在兩次重復(fù)實(shí)驗(yàn)中該事件必有一次發(fā)生 B、在一次實(shí)驗(yàn)中沒(méi)有發(fā)生,下次肯定發(fā)生
C、在一次實(shí)驗(yàn)中已經(jīng)發(fā)生,下次肯定不發(fā)生 D、每次實(shí)驗(yàn)中事件發(fā)生的.可能性是50%
8、在生產(chǎn)的100件產(chǎn)品中,有95件正品,5件次品。從中任抽一件是次品的概率為( )
A、0.05 B、0.5 C、0.95 D、95
9、有50個(gè)型號(hào)相同的乒乓球,其中一等品40個(gè),二等品8個(gè),三等品2個(gè),現(xiàn)從中任取一個(gè)乒乓球,抽到一等品的概率是( )
A、 B、 C、 D、
10、卓瑪?shù)奈木吆兄杏袃芍灩P:一支紅色的、一支綠色的;三支水彩筆:分別是黃色、紅色、黑色,任意拿出一支蠟筆和一支水彩筆,正好都是紅色的概率是( )
A、 B、 C、 D、
11、某燈泡廠的一次質(zhì)量檢查中,從20xx個(gè)燈泡中抽查了100個(gè),其中有6個(gè)不合格,那么在這20xx個(gè)燈泡中,估計(jì)有 個(gè)燈泡不合格。
12、隨意安排甲、乙、丙3人在3天節(jié)日中值班,每人值班1天。
(1)這3人的值班順序共有多少種不同的排列方法?
(2)其中甲排在乙之前的排法有多少種?
(3)甲排在乙之前的概率是多少?
學(xué)數(shù)學(xué)的竅門有哪些
學(xué)數(shù)學(xué)最重要的就是解題能力。要想會(huì)做數(shù)學(xué)題目,就要有大量的練習(xí)積累,知道各類型題目的解題步驟與方法,題目做多了就有手感了,再拿出類似的題目才會(huì)有解題思路。
其次是學(xué)會(huì)預(yù)習(xí)。解題思路不是直接就有的,也并非通過(guò)做幾道簡(jiǎn)單的題目就能輕易獲得,而是在預(yù)習(xí)過(guò)程中不斷積累出來(lái)的。因此,預(yù)習(xí)在數(shù)學(xué)學(xué)習(xí)過(guò)程中起到了非常重要的作用。預(yù)習(xí)一方面能夠讓大家提前對(duì)數(shù)學(xué)知識(shí)有所了解,另一方面能夠培養(yǎng)數(shù)學(xué)獨(dú)立學(xué)習(xí)能力。
學(xué)數(shù)學(xué)必須多做題。理解了數(shù)學(xué)基本定義和知識(shí)點(diǎn)以后,就需要通過(guò)做對(duì)應(yīng)習(xí)題去鞏固知識(shí),多做多練才能更好地掌握所學(xué)知識(shí),學(xué)數(shù)學(xué)也是看花容易繡花難的,只有真正動(dòng)手去做題、經(jīng)歷了實(shí)操過(guò)程能學(xué)會(huì)。
學(xué)好數(shù)學(xué)有什么技巧
1、有良好的學(xué)習(xí)興趣
(1)課前預(yù)習(xí),對(duì)所學(xué)知識(shí)產(chǎn)生疑問(wèn),產(chǎn)生好奇心。
(2)聽(tīng)課中要配合老師講課,滿足感官的興奮性。聽(tīng)課中重點(diǎn)解決預(yù)習(xí)中疑問(wèn),把老師課堂的提問(wèn)、停頓、教具和模型的演示都視為欣賞音樂(lè),及時(shí)回答老師課堂提問(wèn),培養(yǎng)思考與老師同步性,提高精神,把老師對(duì)你的提問(wèn)的評(píng)價(jià),變?yōu)楸薏邔W(xué)習(xí)的動(dòng)力。
2、建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣
習(xí)慣是經(jīng)過(guò)重復(fù)練習(xí)而鞏固下來(lái)的穩(wěn)重持久的條件反射和自然需要。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會(huì)使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過(guò)程中,要把教師所傳授的知識(shí)翻譯成為自己的特殊語(yǔ)言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時(shí)間,以便加寬知識(shí)面和培養(yǎng)自己再學(xué)習(xí)能力。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15
有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù),整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).
注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);不是有理數(shù);
(2)有理數(shù)的分類:①②
(3)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的.數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);
a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù).
【中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
中考數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)01-13
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-24
[實(shí)用]中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-24
中考數(shù)學(xué)知識(shí)點(diǎn)03-15
中考數(shù)學(xué)必考知識(shí)點(diǎn)03-12
中考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)優(yōu)秀05-08
2018中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12-31