成年人在线观看视频免费,国产第2页,人人狠狠综合久久亚洲婷婷,精品伊人久久

我要投稿 投訴建議

中考數(shù)學(xué)模擬試題與答案

時間:2022-08-06 09:36:08 中考 我要投稿
  • 相關(guān)推薦

中考數(shù)學(xué)模擬試題與答案

  科學(xué)安排、合理利用,在這有限的時間內(nèi)中等以上的學(xué)生成績就會有明顯的提高,為了復(fù)習(xí)工作能夠科學(xué)有效,為了做好中考復(fù)習(xí)工作全面迎接中考,下文為各位考生準備了2016年中考數(shù)學(xué)模擬試題。

中考數(shù)學(xué)模擬試題與答案

  A級 基礎(chǔ)題

  1.(2013年浙江麗水)若二次函數(shù)y=ax2的圖象經(jīng)過點P(-2,4),則該圖象必經(jīng)過點()

  A.(2,4) B.(-2,-4) C.(-4,2) D.(4,-2)

  2.拋物線y=x2+bx+c的圖象先向右平移2個單位長度,再向下平移3個單位長度,所得圖象的函數(shù)解析式為y=(x-1)2-4,則b,c的值為()

  A.b=2,c=-6 B.b=2,c=0 C.b=-6,c=8 D.b=-6,c=2

  3.(2013年浙江寧波)如圖311,二次函數(shù)y=ax2+bx+c的圖象開口向上,對稱軸為直線x=1,圖象經(jīng)過(3,0),下列結(jié)論中,正確的一項是()

  A.abc0 B.2a+b0 C.a-b+c0 D.4ac-b20

  4.(2013年山東聊城)二次函數(shù)y=ax2+bx的圖象如圖312,那么一次函數(shù)y=ax+b的圖象大致是()

  5.(2013年四川內(nèi)江)若拋物線y=x2-2x+c與y軸的交點為(0,-3),則下列說法不正確的是()

  A.拋物線開口向上 B.拋物線的對稱軸是x=1

  C.當x=1時,y的最大值為-4 D.拋物線與x軸的交點為(-1,0),(3,0)

  6.(2013年江蘇徐州)二次函數(shù)y=ax2+bx+c圖象上部分點的坐標滿足下表:

  x -3 -2 -1 0 1

  y -3 -2 -3 -6 -11

  則該函數(shù)圖象的頂點坐標為()

  A.(-3,-3) B.(-2,-2) C.(-1,-3) D.(0,-6)

  7.(2013年湖北黃石)若關(guān)于x的函數(shù)y=kx2+2x-1與x軸僅有一個公共點,則實數(shù)k的值為__________.

  8.(2013年北京)請寫出一個開口向上,并且與y軸交于點(0,1)的拋物線的解析式______________.

  9.(2013年浙江湖州)已知拋物線y=-x2+bx+c經(jīng)過點A(3,0),B(-1,0).

  (1)求拋物線的解析式;

  (2)求拋物線的頂點坐標.

  B級 中等題

  10.(2013年江蘇蘇州)已知二次函數(shù)y=x2-3x+m(m為常數(shù))的圖象與x軸的一個交點為(1,0),則關(guān)于x的一元二次方程x2-3x+m=0的兩實數(shù)根是()

  A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3

  11.(2013年四川綿陽)二次函數(shù)y=ax2+bx+c的圖象如圖313,給出下列結(jié)論:①2a+b②b③若-1

  12.(2013年廣東)已知二次函數(shù)y=x2-2mx+m2-1.

  (1)當二次函數(shù)的圖象經(jīng)過坐標原點O(0,0)時,求二次函數(shù)的解析式;

  (2)如圖314,當m=2時,該拋物線與y軸交于點C,頂點為D,求C,D兩點的坐標;

  (3)在(2)的條件下,x軸上是否存在一點P,使得PC+PD最短?若P點存在,求出P點的坐標;若P點不存在,請說明理由.

  C級 拔尖題

  13.(2013年黑龍江綏化)如圖315,已知拋物線y=1a(x-2)(x+a)(a0)與x軸交于點B,C,與y軸交于點E,且點B在點C的左側(cè).

  (1)若拋物線過點M(-2,-2),求實數(shù)a的值;

  (2)在(1)的條件下,解答下列問題;

 、偾蟪觥鰾CE的面積;

 、谠趻佄锞的對稱軸上找一點H,使CH+EH的值最小,直接寫出點H的坐標.

  14.(2012年廣東肇慶)已知二次函數(shù)y=mx2+nx+p圖象的頂點橫坐標是2,與x軸交于A(x1,0),B(x2,0),x10

  (1)求證:n+4m=0;

  (2)求m,n的值;

  (3)當p0且二次函數(shù)圖象與直線y=x+3僅有一個交點時,求二次函數(shù)的最大值.

  15.(2013年廣東湛江)如圖316,在平面直角坐標系中,頂點為(3,4)的拋物線交y軸于A點,交x軸與B,C兩點(點B在點C的左側(cè)),已知A點坐標為(0,-5).

  (1)求此拋物線的解析式;

  (2)過點B作線段AB的垂線交拋物線于點D,如果以點C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸與⊙C的位置關(guān)系,并給出證明;

  (3)在拋物線上是否存在一點P,使△ACP是以AC為直角邊的直角三角形.若存在,求點P的坐標;若不存在,請說明理由.

  參考答案

  1.A

  2.B 解析:利用反推法解答, 函數(shù)y=(x-1)2-4的頂點坐標為(1,-4),其向左平移2個單位長度,再向上平移3個單位長度,得到函數(shù)y=x2+bx+c,又∵1-2=-1,-4+3=-1,平移前的函數(shù)頂點坐標為(-1,-1),函數(shù)解析式為y=(x+1)2-1,即y=x2+2x,b=2,c=0.

  3.D 4.C 5.C 6.B

  7.k=0或k=-1 8.y=x2+1(答案不唯一)

  9.解:(1)∵拋物線y=-x2+bx+c經(jīng)過點A(3,0),B(-1,0),

  拋物線的解析式為y=-(x-3)(x+1),

  即y=-x2+2x+3.

  (2)∵y=-x2+2x+3=-(x-1)2+4,

  拋物線的頂點坐標為(1,4).

  10.B 11.①③④

  12.解:(1)將點O(0,0)代入,解得m=1,

  二次函數(shù)關(guān)系式為y=x2+2x或y=x2-2x.

  (2)當m=2時,y=x2-4x+3=(x-2)2-1,

  D(2,-1).當x=0時,y=3,C(0,3).

  (3)存在.接連接C,D交x軸于點P,則點P為所求.

  由C(0,3),D(2,-1)求得直線CD為y=-2x+3.

  當y=0時,x=32,P32,0.

  13.解:(1)將M(-2,-2)代入拋物線解析式,得

  -2=1a(-2-2)(-2+a),

  解得a=4.

  (2)①由(1),得y=14(x-2)(x+4),

  當y=0時,得0=14(x-2)(x+4),

  解得x1=2,x2=-4.

  ∵點B在點C的左側(cè),B(-4,0),C(2,0).

  當x=0時,得y=-2,即E(0,-2).

  S△BCE=1262=6.

 、谟蓲佄锞解析式y(tǒng)=14(x-2)(x+4),得對稱軸為直線x=-1,

  根據(jù)C與B關(guān)于拋物線對稱軸x=-1對稱,連接BE,與對稱軸交于點H,即為所求.

  設(shè)直線BE的解析式為y=kx+b,

  將B(-4,0)與E(0,-2)代入,得-4k+b=0,b=-2,

  解得k=-12,b=-2.直線BE的解析式為y=-12x-2.

  將x=-1代入,得y=12-2=-32,

  則點H-1,-32.

  14.(1)證明:∵二次函數(shù)y=mx2+nx+p圖象的頂點橫坐標是2,

  拋物線的對稱軸為x=2,即-n2m=2,

  化簡,得n+4m=0.

  (2)解:∵二次函數(shù)y=mx2+nx+p與x軸交于A(x1,0),B(x2,0),x10

  OA=-x1,OB=x2,x1+x2=-nm,x1x2=pm.

  令x=0,得y=p,C(0,p).OC=|p|.

  由三角函數(shù)定義,得tanCAO=OCOA=-|p|x1,tanCBO=OCOB=|p|x2.

  ∵tanCAO-tanCBO=1,即-|p|x1-|p|x2=1.

  化簡,得x1+x2x1x2=-1|p|.

  將x1+x2=-nm,x1x2=pm代入,得-nmpm=-1|p|化簡,得n=p|p|=1.

  由(1)知n+4m=0,

  當n=1時,m=-14;當n=-1時,m=14.

  m,n的值為:m=14,n=-1(此時拋物線開口向上)或m=-14,n=1(此時拋物線開口向下).

  (3)解:由(2)知,當p0時,n=1,m=-14,

  拋物線解析式為:y=-14x2+x+p.

  聯(lián)立拋物線y=-14x2+x+p與直線y=x+3解析式得到-14x2+x+p=x+3,

  化簡,得x2-4(p-3)=0.

  ∵二次函數(shù)圖象與直線y=x+3僅有一個交點,

  一元二次方程根的判別式等于0,

  即=02+16(p-3)=0,解得p=3.

  y=-14x2+x+3=-14(x-2)2+4.

  當x=2時,二次函數(shù)有最大值,最大值為4.

  15.解:(1)設(shè)此拋物線的解析式為y=a(x-3)2+4,

  此拋物線過點A(0,-5),

  -5=a(0-3)2+4,a=-1.

  拋物線的解析式為y=-(x-3)2+4,

  即y=-x2+6x-5.

  (2)拋物線的對稱軸與⊙C相離.

  證明:令y=0,即-x2+6x-5=0,得x=1或x=5,

  B(1,0),C(5,0).

  設(shè)切點為E,連接CE,

  由題意,得,Rt△ABO∽Rt△BCE.

  ABBC=OBCE,即12+524=1CE,

  解得CE=426.

  ∵以點C為圓心的圓與直線BD相切,⊙C的半徑為r=d=426.

  又點C到拋物線對稱軸的距離為5-3=2,而2426.

  則此時拋物線的對稱軸與⊙C相離.

  (3)假設(shè)存在滿足條件的點P(xp,yp),

  ∵A(0,-5),C(5,0),

  AC2=50,

  AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.

 、佼擜=90時,在Rt△CAP中,

  由勾股定理,得AC2+AP2=CP2,

  50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,

  整理,得xp+yp+5=0.

  ∵點P(xp,yp)在拋物線y=-x2+6x-5上,

  yp=-x2p+6xp-5.

  xp+(-x2p+6xp-5)+5=0,

  解得xp=7或xp=0,yp=-12或yp=-5.

  點P為(7,-12)或(0,-5)(舍去).

 、诋擟=90時,在Rt△ACP中,

  由勾股定理,得AC2+CP2=AP2,

  50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,

  整理,得xp+yp-5=0.

  ∵點P(xp,yp)在拋物線y=-x2+6x-5上,

  yp=-x2p+6xp-5,

  xp+(-x2p+6xp-5)-5=0,

  解得xp=2或xp=5,yp=3或yp=0.

  點P為(2,3)或(5,0)(舍去)

  綜上所述,滿足條件的點P的坐標為(7,-12)或(2,3).

 

【中考數(shù)學(xué)模擬試題與答案】相關(guān)文章:

中考英語各類試題及答案09-25

2017安徽中考語文試題及答案09-26

西學(xué)中考試試題及答案04-13

2022無錫中考數(shù)學(xué)試題及答案11-03

2017中考英語仿真練習(xí)試題(含答案)09-26

2017濟南中考語文試卷試題(含答案解析)09-26

2017山西省中考信息技術(shù)試題及答案09-25

2014年廣州中考英語模擬試題與答案(word版)09-25

2014年廣州中考英語模擬試題與答案(word版)09-25

閱讀理解試題及答案11-14