成年人在线观看视频免费,国产第2页,人人狠狠综合久久亚洲婷婷,精品伊人久久

我要投稿 投訴建議

成考《高等數(shù)學(xué)》考試大綱「部分」

時(shí)間:2020-12-22 19:23:14 成人高考 我要投稿

2017年成考《高等數(shù)學(xué)》考試大綱「部分」

  一、函數(shù)、極限和連續(xù)

2017年成考《高等數(shù)學(xué)》考試大綱「部分」

  (一)函數(shù)

  1.知識(shí)范圍

  (1)函數(shù)的概念

  函數(shù)的定義 函數(shù)的表示法 分段函數(shù) 隱函數(shù)

  (2)函數(shù)的性質(zhì)

  單調(diào)性 奇偶性 有界性 周期性

  (3)反函數(shù)

  反函數(shù)的定義 反函數(shù)的圖像

  (4)基本初等函數(shù)

  冪函數(shù) 指數(shù)函數(shù) 對(duì)數(shù)函數(shù) 三角函數(shù) 反三角函數(shù)

  (5)函數(shù)的四則運(yùn)算與復(fù)合運(yùn)算

  (6)初等函數(shù)

  2.要求

  (1)理解函數(shù)的概念。會(huì)求函數(shù)的表達(dá)式、定義域及函數(shù)值。會(huì)求分段函數(shù)的定義域、函數(shù)值,會(huì)作出簡(jiǎn)單的分段函數(shù)的圖像。

  (2)理解函數(shù)的單調(diào)性、奇偶性、有界性和周期性。

  (3)了解函數(shù) 與其反函數(shù) 之間的關(guān)系(定義域、值域、圖像),會(huì)求單調(diào)函數(shù)的反函數(shù)。

  (4)熟練掌握函數(shù)的四則運(yùn)算與復(fù)合運(yùn)算。

  (5)掌握基本初等函數(shù)的性質(zhì)及其圖像。

  (6)了解初等函數(shù)的概念。

  (7)會(huì)建立簡(jiǎn)單實(shí)際問(wèn)題的函數(shù)關(guān)系式。

  (二)極限

  1.知識(shí)范圍

  (1)數(shù)列極限的概念

  數(shù)列 數(shù)列極限的定義

  (2)數(shù)列極限的性質(zhì)

  唯一性 有界性 四則運(yùn)算法則 夾逼定理 單調(diào)有界數(shù)列極限存在定理

  (3)函數(shù)極限的概念

  函數(shù)在一點(diǎn)處極限的定義 左、右極限及其與極限的關(guān)系 趨于無(wú)窮 時(shí)函數(shù)的極限 函數(shù)極限的幾何意義

  (4)函數(shù)極限的性質(zhì)

  唯一性 四則運(yùn)算法則 夾通定理

  (5)無(wú)窮小量與無(wú)窮大量

  無(wú)窮小量與無(wú)窮大量的定義 無(wú)窮小量與無(wú)窮大量的關(guān)系 無(wú)窮小量的性質(zhì) 無(wú)窮小量的階

  (6)兩個(gè)重要極限

  2.要求

  (1)理解極限的概念(對(duì)極限定義中“ ”、“ ”、“ ”等形式的描述不作要求)。會(huì)求函數(shù)在一點(diǎn)處的左極限與右極限,了解函數(shù)在一點(diǎn)處極限存在的充分必要條件。

  (2)了解極限的有關(guān)性質(zhì),掌握極限的四則運(yùn)算法則。

  (3)理解無(wú)窮小量、無(wú)窮大量的概念,掌握無(wú)窮小量的性質(zhì)、無(wú)窮小量與無(wú)窮大量的關(guān)系。會(huì)進(jìn)行無(wú)窮小量階的比較(高階、低階、同階和等價(jià))。會(huì)運(yùn)用等價(jià)無(wú)窮小量代換求極限。

  (4)熟練掌握用兩個(gè)重要極限求極限的方法。

  (三)連續(xù)

  1.知識(shí)范圍

  (1)函數(shù)連續(xù)的概念

  函數(shù)在一點(diǎn)處連續(xù)的定義 左連續(xù)與右連續(xù) 函數(shù)在一點(diǎn)處連續(xù)的充分必要條件 函數(shù)的間斷點(diǎn)及其分類

  (2)函數(shù)在一點(diǎn)處連續(xù)的性質(zhì)

  連續(xù)函數(shù)的四則運(yùn)算 復(fù)合函數(shù)的連續(xù)性 反函數(shù)的連續(xù)性

  (3)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)

  有界性定理 最大值與最小值定理 介值定理(包括零點(diǎn)定理)

  (4)初等函數(shù)的連續(xù)性

  2.要求

  (1)理解函數(shù)在一點(diǎn)處連續(xù)與間斷的概念,理解函數(shù)在一點(diǎn)處連續(xù)與極限存在的關(guān)系,掌握判斷函數(shù)(含分段函數(shù))在一點(diǎn)處的連續(xù)性的方法。

  (2)會(huì)求函數(shù)的'間斷點(diǎn)及確定其類型。

  (3)掌握在閉區(qū)間上連續(xù)函數(shù)的性質(zhì),會(huì)用介值定理推證一些簡(jiǎn)單命題。

  (4)理解初等函數(shù)在其定義區(qū)間上的連續(xù)性,會(huì)利用連續(xù)性求極限。

  二、一元函數(shù)微分學(xué)

  (一)導(dǎo)數(shù)與微分

  1.知識(shí)范圍

  (1)導(dǎo)數(shù)概念

  導(dǎo)數(shù)的定義 左導(dǎo)數(shù)與右導(dǎo)數(shù) 函數(shù)在一點(diǎn)處可導(dǎo)的充分必要條件 導(dǎo)數(shù)的幾何意義與物理意義 可導(dǎo)與連續(xù)的關(guān)系

  (2)求導(dǎo)法則與導(dǎo)數(shù)的基本公式

  導(dǎo)數(shù)的四則運(yùn)算 反函數(shù)的導(dǎo)數(shù) 導(dǎo)數(shù)的基本公式

  (3)求導(dǎo)方法

  復(fù)合函數(shù)的求導(dǎo)法 隱函數(shù)的求導(dǎo)法 對(duì)數(shù)求導(dǎo)法 由參數(shù)方程確定的函數(shù)的求導(dǎo)法 求分段函數(shù)的導(dǎo)數(shù)

  (4)高階導(dǎo)數(shù)

  高階導(dǎo)數(shù)的定義 高階導(dǎo)數(shù)的計(jì)算

  (5)微分

  微分的定義 微分與導(dǎo)數(shù)的關(guān)系 微分法則 一階微分形式不變性

  2.要求

  (1)理解導(dǎo)數(shù)的概念及其幾何意義,了解可導(dǎo)性與連續(xù)性的關(guān)系,掌握用定義求函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的方法。

  (2)會(huì)求曲線上一點(diǎn)處的切線方程與法線方程。

  (3)熟練掌握導(dǎo)數(shù)的基本公式、四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)方法,會(huì)求反函數(shù)的導(dǎo)數(shù)。

  (4)掌握隱函數(shù)求導(dǎo)法、對(duì)數(shù)求導(dǎo)法以及由參數(shù)方程所確定的函數(shù)的求導(dǎo)方法,會(huì)求分段函數(shù)的導(dǎo)數(shù)。

  (5)理解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的 階導(dǎo)數(shù)。

  (6)理解函數(shù)的微分概念,掌握微分法則,了解可微與可導(dǎo)的關(guān)系,會(huì)求函數(shù)的一階微分。

  (二)微分中值定理及導(dǎo)數(shù)的應(yīng)用

  1.知識(shí)范圍

  (1)微分中值定理

  羅爾(Rolle)定理 拉格朗日(Lagrange)中值定理

  (2)洛必達(dá)(L‘Hospital)法則

  (3)函數(shù)增減性的判定法

  (4)函數(shù)的極值與極值點(diǎn) 最大值與最小值

  (5)曲線的凹凸性、拐點(diǎn)

  (6)曲線的水平漸近線與鉛直漸近線

  2.要求

  (1)理解羅爾定理、拉格朗日中值定理及它們的幾何意義。會(huì)用羅爾定理證明方程根的存在性。會(huì)用拉格朗日中值定理證明簡(jiǎn)單的不等式。

  (2)熟練掌握用洛必達(dá)法則求各種型未定式的極限的方法。

  (3)掌握利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性及求函數(shù)的單調(diào)增、減區(qū)間的方法,會(huì)利用函數(shù)的單調(diào)性證明簡(jiǎn)單的不等式。

  (4)理解函數(shù)極值的概念。掌握求函數(shù)的極值、最大值與最小值的方法,會(huì)解簡(jiǎn)單的應(yīng)用問(wèn)題。

  (5)會(huì)判斷曲線的凹凸性,會(huì)求曲線的拐點(diǎn)。

  (6)會(huì)求曲線的水平漸近線與鉛直漸近線。

  (7)會(huì)作出簡(jiǎn)單函數(shù)的圖形。

  三、一元函數(shù)積分學(xué)

  (一)不定積分

  1.知識(shí)范圍

  (1)不定積分

  原函數(shù)與不定積分的定義 原函數(shù)存在定理 不定積分的性質(zhì)

  (2)基本積分公式

  (3)換元積分法

  第一換元法(湊微分法) 第二換元法

  (4)分部積分法

  (5)一些簡(jiǎn)單有理函數(shù)的積分

  2.要求

  (1)理解原函數(shù)與不定積分的概念及其關(guān)系,掌握不定積分的性質(zhì),了解原函數(shù)存在定理。

  (2)熟練掌握不定積分的基本公式。

  (3)熟練掌握不定積分第一換元法,掌握第二換元法(限于三角代換與簡(jiǎn)單的根式代換)。

  (4)熟練掌握不定積分的分部積分法。

  (5)會(huì)求簡(jiǎn)單有理函數(shù)的不定積分。

  (二)定積分

  1.知識(shí)范圍

  (1)定積分的概念

  定積分的定義及其幾何意義 可積條件

  (2)定積分的性質(zhì)

  (3)定積分的計(jì)算

  變上限積分 牛頓—萊布尼茨(Newton-Leibniz)公式 換元積分法 分部積分法

  (4)無(wú)窮區(qū)間的廣義積分

  (5)定積分的應(yīng)用

  平面圖形的面積 旋轉(zhuǎn)體體積 物體沿直線運(yùn)動(dòng)時(shí)變力所作的功

  2.要求

  (1)理解定積分的概念及其幾何意義,了解函數(shù)可積的條件。

  (2)掌握定積分的基本性質(zhì)。

  (3)理解變上限積分是變上限的函數(shù),掌握對(duì)變上限定積分求導(dǎo)數(shù)的方法。

  (4)熟練掌握牛頓—萊布尼茨公式。

  (5)掌握定積分的換元積分法與分部積分法。

  (6)理解無(wú)窮區(qū)間的廣義積分的概念,掌握其計(jì)算方法。

  (7)掌握直角坐標(biāo)系下用定積分計(jì)算平面圖形的面積以及平面圖形繞坐標(biāo)軸旋轉(zhuǎn)所生成的旋轉(zhuǎn)體體積。

  會(huì)用定積分求沿直線運(yùn)動(dòng)時(shí)變力所作的功。

  四、向量代數(shù)與空間解析幾何

  (一)向量代數(shù)

  1.知識(shí)范圍

  (1)向量的概念

  向量的定義 向量的模 單位向量 向量在坐標(biāo)軸上的投影 向量的坐標(biāo)表示法 向量的方向余弦

  (2)向量的線性運(yùn)算

  向量的加法 向量的減法 向量的數(shù)乘

  (3)向量的數(shù)量積

  二向量的夾角 二向量垂直的充分必要條件

  (4)二向量的向量積 二向量平行的充分必要條件

  2.要求

  (1)理解向量的概念,掌握向量的坐標(biāo)表示法,會(huì)求單位向量、方向余弦、向量在坐標(biāo)軸上的投影。

  (2)熟練掌握向量的線性運(yùn)算、向量的數(shù)量積與向量積的計(jì)算方法。

  (3)熟練掌握二向量平行、垂直的充分必要條件。

  (二)平面與直線

  1.知識(shí)范圍

  (1)常見的平面方程

  點(diǎn)法式方程 一般式方程

  (2)兩平面的位置關(guān)系(平行、垂直和斜交)

  (3)點(diǎn)到平面的距離

  (4)空間直線方程

  標(biāo)準(zhǔn)式方程(又稱對(duì)稱式方程或點(diǎn)向式方程)一般式方程 參數(shù)式方程

  (5)兩直線的位置關(guān)系(平行、垂直)

  (6)直線與平面的位置關(guān)系(平行、垂直和直線在平面上)

  2.要求

  (1)會(huì)求平面的點(diǎn)法式方程、一般式方程。會(huì)判定兩平面的垂直、平行。會(huì)求兩平面間的夾角。

  (2)會(huì)求點(diǎn)到平面的距離。

  (3)了解直線的一般式方程,會(huì)求直線的標(biāo)準(zhǔn)式方程、參數(shù)式方程。會(huì)判定兩直線平行、垂直。

  (4)會(huì)判定直線與平面間的關(guān)系(垂直、平行、直線在平面上)。

  (三)簡(jiǎn)單的二次曲面

  1.知識(shí)范圍

  球面 母線平行于坐標(biāo)軸的柱面 旋轉(zhuǎn)拋物面 圓錐面 橢球面

  2.要求

  了解球面、母線平行于坐標(biāo)軸的柱面、旋轉(zhuǎn)拋物面、圓錐面和橢球面的方程及其圖形。

  五、多元函數(shù)微積分學(xué)

  (一)多元函數(shù)微分學(xué)

  1.知識(shí)范圍

  (1)多元函數(shù)

  多元函數(shù)的定義 二元函數(shù)的幾何意義 二元函數(shù)極限與連續(xù)的概念

  (2)偏導(dǎo)數(shù)與全微分

  偏導(dǎo)數(shù) 全微分 二階偏導(dǎo)數(shù)

  (3)復(fù)合函數(shù)的偏導(dǎo)數(shù)

  (4)隱函數(shù)的偏導(dǎo)數(shù)

  (5)二元函數(shù)的無(wú)條件極值與條件極值

  2.要求

  (1)了解多元函數(shù)的概念、二元函數(shù)的幾何意義。會(huì)求二次函數(shù)的表達(dá)式及定義域。了解二元函數(shù)的極限與連續(xù)概念(對(duì)計(jì)算不作要求)。

  (2)理解偏導(dǎo)數(shù)概念,了解偏導(dǎo)數(shù)的幾何意義,了解全微分概念,了解全微分存在的必要條件與充分條件。

  (3)掌握二元函數(shù)的一、二階偏導(dǎo)數(shù)計(jì)算方法。

  (4)掌握復(fù)合函數(shù)一階偏導(dǎo)數(shù)的求法。

  (5)會(huì)求二元函數(shù)的全微分。

  (6)掌握由方程 所確定的隱函數(shù) 的一階偏導(dǎo)數(shù)的計(jì)算方法。

  (7)會(huì)求二元函數(shù)的無(wú)條件極值。會(huì)用拉格朗日乘數(shù)法求二元函數(shù)的條件極值。

  (二)二重積分

  1.知識(shí)范圍

  (1)二重積分的概念

  二重積分的定義二重積分的幾何意義

  (2)二重積分的性質(zhì)

  (3)二重積分的計(jì)算

  (4)二重積分的應(yīng)用

  2.要求

  (1)理解二重積分的概念及其性質(zhì)。

  (2)掌握二重積分在直角坐標(biāo)系及極坐標(biāo)系下的計(jì)算方法。

  (3)會(huì)用二重積分解決簡(jiǎn)單的應(yīng)用問(wèn)題(限于空間封閉曲面所圍成的有界區(qū)域的體積、平面薄板質(zhì)量)。

  六、無(wú)窮級(jí)數(shù)

  (一)數(shù)項(xiàng)級(jí)數(shù)

  1.知識(shí)范圍

  (1)數(shù)項(xiàng)級(jí)數(shù)

  數(shù)項(xiàng)級(jí)數(shù)的概念 級(jí)數(shù)的收斂與發(fā)散 級(jí)數(shù)的基本性質(zhì) 級(jí)數(shù)收斂的必要條件

  (2)正項(xiàng)級(jí)數(shù)收斂性的判別法

  比較判別法 比值判別法

  (3)任意項(xiàng)級(jí)數(shù)

  交錯(cuò)級(jí)數(shù) 絕對(duì)收斂 條件收斂 萊布尼茨判別法

  2.要求

  (1)理解級(jí)數(shù)收斂、發(fā)散的概念。掌握級(jí)數(shù)收斂的必要條件,了解級(jí)數(shù)的基本性質(zhì)。

  (2)掌握正項(xiàng)級(jí)數(shù)的比值判別法。會(huì)用正項(xiàng)級(jí)數(shù)的比較判別法。

  (3)掌握幾何級(jí)數(shù)、調(diào)和級(jí)數(shù)與級(jí)數(shù)的收斂性。

  (4)了解級(jí)數(shù)絕對(duì)收斂與條件收斂的概念,會(huì)使用萊布尼茨判別法。

  (二)冪級(jí)數(shù)

  1.知識(shí)范圍

  (1)冪級(jí)數(shù)的概念

  收斂半徑 收斂區(qū)間

  (2)冪級(jí)數(shù)的基本性質(zhì)

  (3)將簡(jiǎn)單的初等函數(shù)展開為冪級(jí)數(shù)

  2.要求

  (1)了解冪級(jí)數(shù)的概念。

  (2)了解冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和、差、逐項(xiàng)求導(dǎo)與逐項(xiàng)積分)。

  (3)掌握求冪級(jí)數(shù)的收斂半徑、收斂區(qū)間(不要求討論端點(diǎn))的方法。

  (4)會(huì)運(yùn)用麥克勞林(Maclaurin)公式,將一些簡(jiǎn)單的初等函數(shù)展開為冪級(jí)數(shù)。

  七、常微分方程

  (一)一階微分方程

  1.知識(shí)范圍

  (1)微分方程的概念

  微分方程的定義 階 解 通解 初始條件 特解

  (2)可分離變量的方程

  (3)一階線性方程

  2.要求

  (1)理解微分方程的定義,理解微分方程的階、解、通解、初始條件和特解。

  (2)掌握可分離變量方程的解法。

  (3)掌握一階線性方程的解法。

  (二)可降價(jià)方程

  1.知識(shí)范圍

  (1) 型方程

  (2) 型方程

  2.要求

  (1)會(huì)用降階法解 型方程。

  (2)會(huì)用降階法解 型方程。

  (三)二階線性微分方程

  1.知識(shí)范圍

  (1)二階線性微分方程解的結(jié)構(gòu)

  (2)二階常系數(shù)齊次線性微分方程

  (3)二階常系數(shù)非齊次線性微分方程

  2.要求

  (1)了解二階線性微分方程解的結(jié)構(gòu)。

  (2)掌握二階常系數(shù)齊次線性微分方程的解法。

  (3)掌握二階常系數(shù)非齊次線性微分方程的解法。

  成人高考數(shù)學(xué)選擇題六個(gè)答題技巧

  “解題思路”在某種程度上來(lái)說(shuō),屬于理論上的“定性”,要想解具體的題目,還得有科學(xué)、合理、簡(jiǎn)便的方法。

  1、直接法

  有些選擇題是由計(jì)算題、應(yīng)用題、證明題、判斷題改編而成的。這類題型可直接從題設(shè)的條件出發(fā),利用已知條件、相關(guān)公式、公理、定理、法則,通過(guò)準(zhǔn)確的運(yùn)算、嚴(yán)謹(jǐn)?shù)耐评、合理的?yàn)證得出正確的結(jié)論,從而確定選擇支的方法。

  2、篩選法

  數(shù)學(xué)選擇題的解題本質(zhì)就是去偽存真,舍棄不符合題目要求的錯(cuò)誤答案,找到符合題意的正確結(jié)論。可通過(guò)篩除一些較易判定的的、不合題意的結(jié)論,以縮小選擇的范圍,再?gòu)钠溆嗟慕Y(jié)論中求得正確的答案。如篩去不合題意的以后,結(jié)論只有一個(gè),則為應(yīng)選項(xiàng)。

  3、特殊值法

  有些選擇題,用常規(guī)方法直接求解比較困難,若根據(jù)答案中所提供的信息,選擇某些特殊情況進(jìn)行分析,或選擇某些特殊值進(jìn)行計(jì)算,或?qū)⒆帜竻?shù)換成具體數(shù)值代入,把一般形式變?yōu)樘厥庑问,再進(jìn)行判斷往往十分簡(jiǎn)單。

  4、驗(yàn)證法

  通過(guò)對(duì)試題的觀察、分析、確定,將各選擇支逐個(gè)代入題干中,進(jìn)行驗(yàn)證、或適當(dāng)選取特殊值進(jìn)行檢驗(yàn)、或采取其他驗(yàn)證手段,以判斷選擇支正誤的方法。

  5、圖象法

  在解答選擇題的過(guò)程中,可先根椐題意,作出草圖,然后參照?qǐng)D形的作法、形狀、位置、性質(zhì),綜合圖象的特征,得出結(jié)論。

  6、試探法

  對(duì)于綜合性較強(qiáng)、選擇對(duì)象比較多的試題,要想條理清楚,可以根據(jù)題意建立一個(gè)幾何模型、代數(shù)構(gòu)造,然后通過(guò)試探法來(lái)選擇,并注意靈活地運(yùn)用上述多種方法。

  祝大家在考試中取得好成績(jī),一次拿證。

【成考《高等數(shù)學(xué)》考試大綱「部分」】相關(guān)文章:

怎樣使用成考英語(yǔ)大綱復(fù)習(xí)01-31

成考專升本高等數(shù)學(xué)公式大全01-09

2014成考報(bào)考指南:成考專升本考試科目05-27

成考語(yǔ)文考試攻略01-10

成人高考專升本高等數(shù)學(xué)考試大綱01-10

2014年成考《專升本高等數(shù)學(xué)》練習(xí)及答案02-14

2017年成人高考《高等數(shù)學(xué)(二)》復(fù)習(xí)大綱02-27

成考專升本考試科目有哪些01-29

成考的考試技巧和注意事項(xiàng)01-23